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Abstract- Healthcare access is a major challenge in underserved 
communities, where people often face barriers such as distance, cost, 
and lack of transportation. HEMA (Horus Expert Medical Assistant 
Robot) is a new technology with the potential to revolutionize 
healthcare access in underserved communities by providing basic 
healthcare services on-site. HEMA is a mobile, affordable, and easy-
to-use robot that can collect patient data, diagnose common diseases, 
and provide basic treatment. 
HEMA can address the challenges of healthcare access in 
underserved communities in a number of ways. First, HEMA can 
provide healthcare services to people who live in remote areas and 
who may not have access to a traditional healthcare facility. Second, 
HEMA can provide affordable healthcare services to people who may 
not be able to afford to pay for healthcare out-of-pocket or who may 
not have health insurance. Third, HEMA can provide healthcare 
services to people who may have difficulty traveling to a traditional 
healthcare facility due to a disability or lack of transportation. 
HEMA has the potential to make a significant impact on the future of 
healthcare delivery in underserved communities. By providing basic 
healthcare services on-site, HEMA can help to improve access to care, 
reduce disparities in health outcomes, and improve the overall health 
and well-being of people in underserved communities. 
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I. Introduction 

Chronic diseases are a major global health problem, 
accounting for over 70% of deaths worldwide and over 80% of 
healthcare costs in developed countries [1]. Early diagnosis 
and treatment of chronic diseases are essential for improving 
patient outcomes and reducing healthcare costs. However, 
early diagnosis can be challenging, as chronic diseases often 
have no or only mild symptoms in the early stages [2]. 

Machine learning (ML) can be used to develop new tools 
for the diagnosis and treatment of chronic diseases. Machine 
learning algorithms can learn from large datasets of patient 
data to identify patterns that are not easily visible to the human 
eye. This information can then be used to make more accurate 
diagnoses and to develop more personalized treatment plans 
[3]. 

Dr HEMA is a machine learning-powered robot designed 
to assist in diagnosing and treating chronic diseases. Dr HEMA 
is equipped with various sensors that collect patient data, such 
as vital signs, blood pressure, and blood sugar levels. This data 
is then fed into machine learning models that are trained to 
identify patterns and make predictions [4]. 

Dr HEMA has been developed to revolutionize the way 
that chronic diseases are diagnosed and treated. HEMA can be 

used to improve the quality of care for patients with chronic 
diseases and to reduce the cost of healthcare by replacing a 
healthcare unit in Remote areas with poor healthcare services. 

Remote areas often face barriers to healthcare access, such 
as lack of health services, transportation, insurance, language 
barriers, and the spread of epidemics such as COVID-19. 
These barriers can lead to several negative health outcomes, 
such as higher rates of preventable diseases and chronic 
illnesses. They can also lead to financial hardship, as people 
who cannot access healthcare may have to pay for expensive 
care out of pocket to get healthcare services in hospitals or 
clinics very far from their homes. 

HEMA has several advantages over traditional healthcare 
delivery models. First, it is mobile, so it can be brought to 
underserved communities that lack access to healthcare 
facilities. Second, it is affordable, so it can be used to provide 
healthcare to people who cannot afford traditional healthcare 
services. Third, it is easy to use, so it can be used by people 
with limited technological knowledge or with disabilities. 
Fourth, it can be programmed to be culturally sensitive, so it 
can be used to provide healthcare services in a way that is 
respectful of people's cultural beliefs and practices. 

Hema can be presented in several models. First, a 
moveable robot that can navigate in the reception area or the 
wards of the hospitals. Second, a steady prototype in the streets 
of remote areas in closed cabinets like ATMs to protect it from 
difficult weather conditions. Third, it can be carried in closed 
caravans that travel in convoys to provide health services in 
neighboring villages at fixed times throughout the day. 

II. Background 

HEMA can provide basic healthcare services such as 
measuring vital signs, diagnosing common diseases, and 
providing basic treatment. It can also be used to provide 
education and counseling on a variety of health topics. 

One of the potential applications of HEMA is to assist 
doctors in diagnosing diseases. It can be equipped with a 
variety of sensors and diagnostic tools, such as a stethoscope, 
otoscope, and blood pressure monitor. It can also be 
programmed to collect data from patients, such as their 
medical history, symptoms, and lifestyle. 

Once HEMA has collected this data, it can use artificial 
intelligence algorithms to analyze it and generate a diagnosis. 
It classifies patient data using a model that has been learned 
from a large dataset of medical records for the same diseases 
on the cloud to identify patterns and trends. 

The ability to diagnose diseases could be particularly 
useful in hospitals, clinics, and pharmacies in underserved 
communities. In these communities, there is often a shortage 
of doctors and other healthcare professionals. HEMA could 



                               Journal of Engineering Research (ERJ) 
                                    Vol. 7 – No. 5, 2023 

                               ©Tanta University, Faculty of Engineering 
ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                e ISSN: 2735-4873 

 

Doi: 10.21608/erjeng.2023.243803.1286 
209 

 

help to fill this gap by providing basic diagnostic services and 
freeing up doctors to focus on more complex cases. 

 
Here are some specific examples of how HEMA could be 

used to diagnose diseases in hospitals, clinics, and pharmacies: 

• In a hospital, HEMA could be used to triage patients 
in the emergency department or to provide diagnostic 
services to patients who are hospitalized but not in 
need of critical care. 

• In a clinic, HEMA could be used to provide 
diagnostic services to patients with chronic diseases, 
such as diabetes or hypertension. 

• In a pharmacy, HEMA could be used to provide 
diagnostic services to patients who are seeking over-
the-counter medications or who are experiencing 

minor 
health 

problems. 
 

The 
average 
human 

lifespan 
has 

increased by five years between 2000 and 2016, to reach 71.4 
years. This increase in lifespan has led to a shortage of 
caregivers and an increase in healthcare budgets. These 
problems are more severe in developing countries with high 
populations, due to low health budgets, poor healthcare 
infrastructure, a lack of well-trained medical staff, and of 
course a need for an automated disease diagnosis technique 
like HEMA.  

III. The proposed HEMA robot 

1. HEMA's Body and Navigation 

HEMA's body is built from fiberglass, a lightweight and 
durable material that is resistant to corrosion and wear. The 
body is designed to be both aesthetically pleasing and 

functional, with smooth contours and rounded edges that 
minimize the risk of injury as shown in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The body of the HEMA robot 

The body contains the movement unit, which consists of 
four DC motors. The motors are responsible for driving 
HEMA's wheels, allowing it to move forward, backward, and 
turn. The movement unit is controlled by a microcontroller, 
which receives commands from the navigation system. 

HEMA's navigation system is based on the Robot 
Operating System (ROS), a widely used open-source software 
platform for robotics. ROS provides a variety of tools and 
libraries for robot perception, control, and planning [5]. 

The navigation system uses a lidar sensor and a depth 
camera to create a map of the environment. The lidar sensor 
emits laser beams and measures the time it takes for them to 
reflect off objects in the environment. The depth camera uses 
structured light to measure the distance to objects in the 
environment. The navigation system uses the map to plan a 
path for HEMA to follow. The path is calculated using a 
variety of algorithms, such as A* search and Dijkstra's 
algorithm [6]. 

The navigation system also uses the sensors to track 
HEMA's position in the environment. The position is tracked 
using a technique called odometry, which measures the 
rotation of HEMA's wheels [7].  

The navigation system is responsible for ensuring that 
HEMA can safely navigate its environment. The system uses 
the map and sensor data to avoid obstacles and to stay on the 
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planned path. The combination of a fiberglass body, a 
powerful movement unit, and a sophisticated navigation 
system allows HEMA to move safely and efficiently in a 
variety of environments. 

2. The preloaded software technology in HEMA Robot  

HEMA's software architecture is designed to be modular, 
scalable, and extensible. It is composed of a user interface, 
knowledge base, and reasoning engine as shown in Figure 2. 

 
Figure 2. The software Architecture of the HEMA robot 

 
A.  HEMA knowledge base 

The HEMA knowledge base module is a critical 
component of HEMA software. It is responsible for storing and 
managing the medical knowledge that HEMA uses to diagnose 
diseases and provide treatment recommendations. The 
knowledge base module must be able to store and manage a 
large and complex body of medical knowledge, as well as keep 
the knowledge base up to date with the latest medical research. 

The knowledge base module is typically implemented as a 
database, which can be relational, NoSQL, or a combination of 
both. The choice of database technology depends on the 
specific requirements of the HEMA system and the 
environment where HEMA will work. 

The knowledge base module is typically accessed by the 
HEMA reasoning engine, which queries the knowledge base 
to retrieve the medical knowledge it needs to make diagnoses 
and provide treatment recommendations. The knowledge base 
module may also be accessed by the HEMA user interface to 
allow healthcare providers and patients to view and update 
patient medical records. 

The HEMA knowledge base module can be used offline 
(local) or online (cloud) depending on the internet connection 
to store and manage the medical knowledge that HEMA uses 
to diagnose diseases and provide treatment recommendations. 
It is accessed by the HEMA reasoning engine and the HEMA 
user interface. 

  

B. The HEMA reasoning engine 
The HEMA reasoning engine uses the knowledge base to 

diagnose diseases and provide treatment recommendations. 
The reasoning engine uses a variety of algorithms, such as rule-
based reasoning and statistical reasoning, to make its 
diagnoses and recommendations. 
The reasoning engine module typically works as follows: 

1. The reasoning engine module first collects data about the 
patient's symptoms and medical history. This data can be 
collected from the patient directly, from the HEMA user 
interface, or other sources, such as electronic health 
records. 

2. The reasoning engine module then uses the collected data 
to query the HEMA knowledge base for relevant medical 
knowledge. 

3. The reasoning engine module then uses the retrieved 
medical knowledge to reason about the patient's condition 
and generate a diagnosis. 

4. The reasoning engine module then uses the diagnosis and 
the retrieved medical knowledge to generate a list of 
potential treatments. 

5. The reasoning engine module then ranks the potential 
treatments and recommends the best treatment to the 
healthcare provider. 

The reasoning engine module is a complex piece of 
software that must be able to reason about a large and complex 
body of medical knowledge. It must also be able to handle 
incomplete and uncertain data. The reasoning engine module 
is implemented using Python. 

The reasoning engine module can be used to develop 
decision-support tools for healthcare providers in underserved 
communities. These tools can help healthcare providers make 
more informed decisions about the diagnosis and treatment of 
their patients. 

The reasoning engine module can be used to develop 
telemedicine systems that allow healthcare providers in 
underserved communities to consult with specialists who are 
in other parts of the country or the world [8]. 

The reasoning engine module can be used to develop 
mobile health applications that allow healthcare providers and 
patients in underserved communities to access healthcare 
information and services on their smartphones and tablets [9]. 

C.  HEMA user interface 

The HEMA user interface is a critical component of the 
HEMA software. It is the interface through which healthcare 
providers and patients interact with HEMA. The user interface 
must be easy to use and accessible so that everyone can benefit 
from the HEMA software. 

The user interface can be used to improve healthcare access 
in underserved communities by: 

• Translating the user interface into languages that are 
spoken by healthcare providers and patients in 
underserved communities. This can help to improve 
communication between healthcare providers and patients, 

HEMA Knowledge 
Base

HEMA Reasoning 
EngineHEMA User 

Interface
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and it can also help patients to better understand their 
diagnoses and treatment recommendations. 

• Making the user interface accessible to people with 
disabilities. For example, the user interface can be 
designed to be used with a screen reader or with other 
assistive technologies. 

• Simplifying the user interface to make it easier to use for 
people with limited computer skills. For example, the user 
interface can use simple language and avoid complex 
menus and dialog boxes. 

 
D. Interoperability of the HEMA Software Components 

The different components of the HEMA software interact with 
each other as follows: 
 
• The HEMA reasoning engine interacts with the HEMA 

knowledge base to retrieve the medical knowledge it 
needs to make diagnoses and recommendations. 

• The HEMA user interface interacts with the HEMA 
reasoning engine to submit patient data and receive 
diagnoses and recommendations. 

 
The different components of the HEMA software work 
together to provide the following functionality: 

• Disease diagnosis: The HEMA reasoning engine uses the 
medical knowledge in the HEMA knowledge base to 
diagnose diseases. To diagnose a disease, the reasoning 
engine first collects data about the patient's symptoms and 
medical history. The reasoning engine then uses this data 
to reason about the patient's condition and generate a 
diagnosis. 

• Treatment recommendations: The HEMA reasoning 
engine uses the medical knowledge in the HEMA 
knowledge base to provide treatment recommendations. 
The reasoning engine first considers the patient's 
diagnosis and medical history to generate a treatment 
recommendation. The reasoning engine then uses this 
information to generate a list of potential treatments. The 
reasoning engine then ranks the potential treatments and 
recommends the best treatment to the healthcare provider. 

The HEMA software architecture is designed to be modular, 
scalable, and extensible. This means that the different 
components of the software can be easily added, removed, or 
modified. This makes it easy to update the HEMA software 
with new medical knowledge or to add new features. Here is 
an example of how the different components of the HEMA 
software might interact with each other to diagnose a patient 
with a common cold as shown in Figure 3. 

 
Figure 3. Interoperability of HEMA Software 

The steps of diagnosis are as follows as shown in Figure 4. 

1- Measuring the patient's symptoms by using HEMA using 
the Sensor Unit. 

2- The HEMA Sensor Unit would then send the patient's 
symptoms to the HEMA Data acquisition unit to get the 
reading from the sensor output signals. 

3- The HEMA reasoning engine would then use the data 
acquisition unit output and do a signal processing to 
remove the noise and prepare the data to store it in the 
Knowledge base.  

4- The reasoning Engine syncs the patient's symptoms and 
medical history with machine learning models to reason 
about the patient's condition and generate a diagnosis. 

5- Check the diagnosis accuracy and then store it in the 
knowledge base as a patient history. 

6- The HEMA reasoning engine would then send the 
diagnosis to the HEMA user interface. 

7- The HEMA user interface would then provide the patient 
with appropriate medical tips. 
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Figure 4. System Components General Overview 
 
 
E. Support continuous learning and adaptation. 

If a new disease is discovered, new medical knowledge 
about the disease can be added to the HEMA knowledge base. 
The HEMA reasoning engine can then be updated to use the 
new knowledge to diagnose the disease. The HEMA user 
interface can also be updated to display information about the 
new disease to healthcare providers and patients. 

The HEMA software architecture is also designed to be 
efficient and reliable. The HEMA reasoning engine is 
optimized to make diagnoses and provide treatment 
recommendations as quickly as possible. The HEMA software 
is also designed to be fault-tolerant, meaning that it can 
continue to operate even if some of its components fail. 

The HEMA software architecture is also designed to be 
easy to use and maintain. This is important for healthcare 
providers in underserved communities, who often have limited 
training and resources. The HEMA user interface is designed 
to be easy to use, even for healthcare providers with limited 
computer skills. The HEMA software is also designed to be 
easy to maintain, with minimal training required. 

F. UI Modules 

The User Interface (UI) module is the main channel of 
communication between the user and the HEMA system as 
shown in Figure 5.  

 
Figure 5.  HEMA Modules 

It is responsible for: 

• Authenticating users: The UI module prompts the user to 
enter their login credentials, such as username and 
password. It then verifies these credentials against the 
system's database to authenticate the user and also uses 
face recognition. 

• Collecting patient data: The UI module collects data 
about the patient's symptoms and medical history. This 
data is then used by the reasoning engine to generate 
diagnoses and treatment recommendations. 

• Displaying system results: The UI module displays the 
results of the system to the user. This could include 
diagnoses, treatment recommendations, or other 
information. 

The UI module consists of two components: 

• Flutter-based Android-generated application: This 
application is developed using the Flutter framework and 
runs on Android tablets. It is responsible for interacting 
with the user and displaying the system results. 

• Eye Emotions: This component uses eye-tracking 
technology and an LED matrix to monitor the user's eye 
movements and facial expressions. This information can 
be used to improve the user experience, provide feedback 
to the system, and make the system more interactive. 

The output of the UI module depends on the output of the 
reasoning engine unit. The reasoning engine unit generates 
diagnoses and treatment recommendations based on the patient 
data collected by the UI module. The UI module then displays 
these results to the user. 

The Flutter framework was chosen to develop the 
application because it is a cross-platform framework that 
supports high performance and is easy to use. The application 
is written in the Dart programming language and contains a 
chatbot, which is part of the machine learning module. The 
Flutter app is directly connected to both the reasoning engine 
and the knowledge base. 

Here are some additional details about the UI module: 

• The Flutter-based Android-generated application uses a 
variety of widgets to create a user-friendly interface. 
These widgets include text fields, buttons, list views, and 
images. 

• The Eye Emotions component uses an LED matrix to give 
the user more visual feedback and to make the system 
more interactive. 

• The UI module is designed to be accessible to users with 
disabilities. For example, the application uses large fonts 
and high-contrast colors to make the text easy to read. 

Overall, the UI module is a critical component of the 
HEMA system. It is responsible for communicating with the 
user, collecting patient data, displaying system results, and 
providing feedback to the system. The UI module is designed 
to be user-friendly, accessible, and interactive. 

 
 
 

3. Hardware module (Sensors and processing Modules) 
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We have 7 different Sensors and each one of them has a 
different software module. 

A. The blood pressure measurement 

Omron M3 Blood Pressure Monitor has been used to speed 
up the development process, but it was challenging to get 
results from it. To address this, we needed to make the 
following changes: 

1. Reading data from the EEPROM IC: In order to retrieve 
information stored in the EEPROM IC, we had to read the 
data from "BR24G16" with an address of 0x50 as shown 
in Figure 6. The result data is stored at addresses 0x0E to 
0xFF, but we started reading the data after 50 seconds. To 
do this, we sent the command "0x0101001" to get the 
systolic blood pressure, "0x0101010" to get the diastolic 
blood pressure, and we used another sensor to get the heart 
rate. We converted the returning data from hexadecimal to 
decimal before processing it. However, this method did 
not always work, and we had problems with 
communication between the ESP and the chip while the 
other controller was working. To solve this, we had to turn 
off the device before reading any data. 

2. Customize the device: the device has been customized by 
using the built-in pressure sensor to create our blood 
pressure monitor. The flowchart in Figure 6 describes the 
full operation of the system. To calculate the mean arterial 
pressure (MAP) of the blood pressure reading, we first 
needed to do signal processing on the output signal. The 
output signal from the amplifier and the pressure sensor 
looks like Figure 6. 
 

 

 
Figure 6. EEPROM connection Schema 

 
To measure blood pressure, we needed to detect the 

heartbeats and their sound while releasing the valve. However, 
we could also do the same operation by using the difference in 

pressure value. We needed to extract the oscillometer pressure 
pulse waveform from the cuff pressure. The MAP value is the 
value of cuff pressure at the maximal oscillometer pulsation 
during the deflation (or inflation) of the cuff. To extract it, we 
needed to use a band-pass filter. We used a finite impulse 
response (FIR) filter because of its simple implementation as a 
digital filter and its features, such as having a linear phase. 
Figure 7 shows a typical cuff pressure signal in the deflation 
phase, and Figure 8 shows the bandpass-filtered signal that 
represents the extracted oscillometer pressure pulse waveform. 

 

Figure7. Blood pressure Flow Chart 

shows Measuring blood pressure using the difference in 
pressure value to measure blood pressure, we needed to detect 
the heartbeats and their sound while releasing the valve. 
However, we could also do the same operation by using the 
difference in pressure value. We needed to extract the 
oscillometer pressure pulse waveform from the cuff pressure. 
The MAP value is the value of cuff pressure at the maximal 
oscillometer pulsation during the deflation (or inflation) of the 
cuff. To extract it, we needed to use a band-pass filter. We used 
a finite impulse response (FIR) filter because of its simple 
implementation as a digital filter and its features, such as 
having a linear phase. Figure 9 shows a typical cuff pressure 
signal in the deflation phase, and Figure 8 shows the bandpass-
filtered signal that represents the extracted oscillometer 
pressure pulse waveform. 

 
 

Figure 8. The bandpass-filtered signal 
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Figure 9. The cuff pressure signal in the deflation phase 

Once we had extracted the oscillometer pressure pulse 
waveform, we had the reading values from the blood pressure. 

B. Blood Sugar  

We used a blood sugar monitor with a Bluetooth 
connection to measure the patient's blood glucose levels. This 
made it easier to pair the device with our system by connecting 
it to the ESP32 microcontroller. The ESP32 then received the 
data from the blood sugar monitor and passed it to the system. 
Since we were using a ready-made device, we did not need to 
do any signal processing on the data. 

C. Alcohol 

An alcohol sensor can be used to detect the presence of 
alcohol in the patient's system. This information can be used to 
diagnose alcohol intoxication and to monitor compliance with 
treatment programs. The sensor output is an analog signal. The 
output has a range that can detect the alcohol in the air and 
classify if the patient has drunk any alcoholic drinks. If the 
output of the sensor is in the range of 25 to 500 parts per 
million (ppm), then the patient is drunk; otherwise, the patient 
is normal. The status of the patient, whether they are drunk or 
not, can affect the diagnosis process in the following ways 
Altered mental status, Physical symptoms, and Behavioral 
changes, and lead to Delayed diagnosis delayed treatment, and 
serious complications. 

D. ECG 

The ECG (electrocardiogram) is a non-invasive test that 
measures the electrical activity of the heart. It is a valuable tool 
for diagnosing and monitoring a variety of heart conditions, 
such as arrhythmias, heart failure, and coronary artery disease. 

To extract the wave elements from the ECG signal, it is 
necessary to perform signal processing. This involves filtering 
the signal to remove noise and artifacts and then identifying 
the peaks and valleys of the signal. The following steps are 
typically involved in ECG signal processing: 

• Filtering: The ECG signal is filtered to remove noise and 
artifacts. This can be done using a variety of filters, such 
as low-pass filters, high-pass filters, and band-pass filters. 
In this case, a band-pass filter was applied to remove the 

noise such as the patient's breathing noise and the DC 
supply noise. Figures 10 and 11 

• Baseline correction: The ECG signal is often baseline 
corrected to remove any DC offset. This can be done using 
a variety of methods, such as a simple moving average 
filter or a high-pass filter. 

• Peak detection: The peaks and valleys of the ECG signal 
are identified. This can be done using a variety of methods, 
such as the Pan-Tompkins algorithm or the Engelse-
Zeelenberg algorithm [10]. 
 

 
Figure10. The difference between the signal before and after filtering 

in the time domain 

 
Figure 11. The difference between the signal before and after 

filtering in the frequency domain 
 

• Signal processing steps start with the output signal from 
the sensor. 

The first step in signal processing is to convert the ECG 
signal from the time domain to the frequency domain. This is 
done using a Fourier transform. Once the signal is in the 
frequency domain, it is easier to apply filters to it. 

In this case, a band-pass filter was applied to the signal to 
remove the noise. The band-pass filter was designed to pass 
frequencies between 0.05 Hz and 150 Hz. This frequency 
range includes the frequencies of the P wave, QRS complex, 
and T wave while excluding the frequencies of noise such as 
the patient's breathing noise and the DC supply noise. 
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• Waveform segmentation 
Once the noise has been removed from the signal, it can be 

segmented into the P wave, QRS complex, and T wave. This 
is done using a thresholding method. 

The thresholding method works by identifying the peaks 
and valleys of the signal that exceed a certain threshold voltage 
level. The P wave is defined as the first peak that exceeds the 
threshold after the T wave of the previous heartbeat. The QRS 
complex is defined as the widest peak that exceeds the 
threshold. The T wave is defined as the first peak after the QRS 
complex that exceeds the threshold. 

• Feature extraction 
Once the wave elements have been extracted from the ECG 

signal, they can be used to calculate a variety of features, such 
as the heart rate, PR interval, QRS duration, and QT interval. 
These features can then be used to diagnose and monitor a 
variety of heart conditions. As shown in figure 12. 

 
Figure 10. the results of the signal 

E. Oximeter sensor output 
Oximeters work by measuring the absorption of light by 

oxygenated and deoxygenated blood. The oximeter emits two 
different wavelengths of light, red and infrared. Oxygenated 
blood absorbs more red light than deoxygenated blood, while 
deoxygenated blood absorbs more infrared light. The oximeter 
measures the amount of light absorbed at each wavelength and 
uses this information to calculate the oxygen saturation level. 

The oximeter signal is a complex waveform that contains a 
variety of information about the patient's oxygen saturation 
level. To extract the oxygen saturation reading from the 
oximeter signal, it is necessary to perform signal processing. 
This involves filtering the signal to remove noise and artifacts 
and then identifying the peaks and valleys of the signal. 

Challenges in oximeter signal processing 

One of the challenges in oximeter signal processing is that 
the measurement can change depending on the pressure 
applied to the sensor by the patient's finger. This is because the 
pressure can affect the blood flow through the fingertip, which 
can in turn affect the amount of light absorbed by the blood. 

 

Solutions to the challenges 
One solution to this challenge is to use a clip to hold the 

finger in place on the sensor during the measurement process. 
This helps to ensure that the pressure applied to the sensor is 
consistent. 

Another solution is to use a signal processing algorithm 
that is robust to changes in pressure. This type of algorithm can 
accurately extract the oxygen saturation reading even if the 
pressure applied to the sensor changes slightly. 

F. BMI 
The body mass index (BMI) is a measure of body fat based 

on height and weight that is used to classify people as 
underweight, normal weight, overweight, or obese. BMI is 
calculated by dividing a person's weight in kilograms by their 
height in meters squared. The formula for calculating BMI is: 

𝑩𝑴𝑰	 = 	𝒘𝒆𝒊𝒈𝒉𝒕	(𝒌𝒈)	/	𝒉𝒆𝒊𝒈𝒉𝒕	(𝒎)^𝟐   …. (1) 

HEMA is using a machine learning model to classify the 
BMI status of patients. The model is trained on a large dataset 
of patient data, including BMI, height, weight, and other health 
information. The model can identify patterns in the data that 
can be used to accurately classify patients into the appropriate 
BMI category.  

Once the patient's BMI status has been classified, HEMA 
can provide tips to help the patient resolve any BMI problems. 
For example, if the patient is underweight, HEMA may 
provide tips on how to gain weight healthily. If the patient is 
overweight or obese, HEMA may provide tips on how to lose 
weight safely and effectively. 

G. GSR 
Is a measure of the electrical conductivity of the skin. It is 

a physiological response that is controlled by the autonomic 
nervous system. GSR is influenced by a variety of factors, 
including emotional arousal, cognitive activity, and physical 
exertion. GSR has a variety of applications, including 
Emotional detection, Stress detection, Attention level, and 
medical diagnoses such as anxiety depression, and sleep 
disorder. 

H. Vision 
HEMA has a camera that is used for authentication and 

other diagnoses in a variety of ways. 

Authentication 

Facial recognition: Facial recognition is a powerful tool for 
authentication. It is used to verify a person's identity by comparing 
their face to a known image. Facial recognition systems can be used 
to unlock devices, access secure areas, and authorize payments. 

Disease Diagnosis 

• Skin cancer diagnosis: Vision systems can be used to diagnose 
skin cancer. They can be trained to identify the characteristic 
features of skin cancer lesions, such as their shape, color, and 
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texture. Vision systems can be used to screen people for skin cancer 
and to help dermatologists diagnose skin cancer more accurately. 

• Diabetic retinopathy diagnosis: Diabetic retinopathy is a 
complication of diabetes that can damage the blood vessels in the 
retina. Vision systems can be used to diagnose diabetic retinopathy 
by identifying the characteristic features of the disease, such as 
bleeding and microaneurysms. Vision systems can be used to 
screen people with diabetes for diabetic retinopathy and to help eye 
doctors diagnose and monitor the disease. 

• Mental health diagnosis: Vision systems can be used to diagnose 
mental health conditions such as depression and anxiety. They can 
be trained to identify the facial expressions and body language 
associated with these conditions. Vision systems can be used to 
screen people for mental health conditions and to help mental 
health professionals diagnose and monitor these conditions. 

4. Machine Learning techniques 

Machine learning (ML) has become increasingly popular 
in recent years due to big data and powerful computing 
resources. ML algorithms are now used to solve a wide range 
of problems in industries such as healthcare, finance, and 
manufacturing. One application of ML in healthcare is in 
ambient assisted living (AAL) systems. AAL systems are 
designed to support patients with chronic diseases and enable 
them to live independently for as long as possible [4].  

The average human lifespan has increased by five years 
between 2000 and 2016, to reach 71.4 years. This increase in 
lifespan has led to a shortage of caregivers and an increase in 
healthcare budgets. These problems are more severe in 
developing countries with high populations, due to low health 
budgets, poor healthcare infrastructure, and a lack of well-
trained medical staff. In this section,  

The concepts of ML that have been used in HEMA are 
using different types of ML algorithms after training and 
evaluation. The Machine learning module always depends on 
the Datasets and the models gain their power from the power 
of the datasets. More than 3 machine learning models have 
been used with different algorithms as follows: 

A. Datasets 

HEMA has been trained and evaluated on ffive datasets: 

1. Vital signs and disease diagnoses dataset (IHCAM) [11]: This 
dataset contains data from over 35,000 patients, including vital 
signs and disease diagnoses. It is divided into five parts, each 
representing the patient's normal and abnormal vital signs 
depending on whether the patient has chronic diseases or is 
normal. The dataset has four classes for the patient: Alert, 
Emergency, Normal, or Warning. 

2. Cardiovascular dataset: This dataset contains data to classify 
whether a patient has cardiovascular disease. It contains 12 
features, most of which HEMA can cover in the vital signs 
process or from the patient's historical data in the knowledge base. 
This dataset has been used to act as a quick check of the patient's 

health status, but to get more details about the diseases or to 
predict them, we used other datasets [12]. 

3. Cleveland Heart Disease dataset (UCI Machine Learning 
Repository) [13]: This dataset is more detailed than the 
cardiovascular dataset, with 60 features to classify cardiovascular 
diseases. It has high accuracy. 

4. Sleep Heart Study dataset [14]: This dataset contains data on 
stress analysis and the habits of patients. It has been used to 
classify whether a patient has any sleep disorders and to get more 
accurate tips to improve their sleep quality. It has also been used 
to get the solution tips to be more accurate because not all 
solutions work with all patients. A specific custom solution should 
be offered for each patient. 

5. Heart failure dataset [15]: This dataset helped us to predict heart 
failure according to the patient's history and the ECG measured 
from the vital signs. 

The following data processing steps for each dataset has been 
conducted. 

1. Preprocessing:  cleaning data and removing any outliers. 

2. Feature engineering: creating new features from the 
existing data to improve the performance of the model. 

3. Splitting: splitting data into training, validation, and test sets. 

More information will be provided about each one in the next 
section. 

B. Machine Learning steps 

Our data has been collected and is ready to start our model 
development. The first step is data Exploration as shown in 
Figure 12  

 

 

Figure 12. Data exploration 

Before building our machine learning models, we 
performed some data preprocessing steps to ensure that the 
data was in a suitable format for training and testing. 

First, we performed a quick check on the data to determine 
the data types. all the data was decimal except for the local 
class and class columns, which were text. shown the result in 
Figure 13.    

Next, we checked for noise in the data. We did this by 
plotting the data in Figure 12. We found that the data did not 
contain any noise, so we were ready to start normalizing the 
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data. To normalize the data, we calculated the Z-score for each 
column. unnecessary columns have been removed, such as 
time stamp and class Num. Finally, one-hot encoding has been 
performed on the class column. The output of this process is 
shown in Figure 14. 

 
   Figure 13. check for null data. 

 
       Figure 14. One hot encoding 

C. ML Algorithms 

Five machine-learning models have been built to operate 
the HEMA Reason Engine. All models were built using 
TensorFlow, an open-source software library for numerical 
computation using data flow graphs. TensorFlow is used for 
machine learning and deep learning but can also be used for a 
variety of other tasks, such as natural language processing and 
image recognition. 

In Figure 15 Models 2 to 6 are built with the same 
algorithm, which is a deep learning neural network with 4 
layers. Each layer consists of a Dense Layer with 128 neurons, 
but the output layer has only 4 neurons with a sigmoid 
activation function. Model 1 uses a different algorithm, the 
KNN algorithm, to cluster all the mixed data and classify 
patients into two categories: normal or having a chronic 
disease. The next model in the sequence starts based on the 
output of this model. The hardware and software data are in 
Table 1 and the evaluation metrics are in Figure 16. 
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Figure 15. Machine Learning Models sequence 
 

 
Figure 16. the final training metrics 

 
 

Table I: Results of the Electric Fault Classification Models. 

Software Version Hardware Specifications 

Python 3.10.9 CPU Intel Core i7-
12700K 3.6 GHz 

GPU NVIDIA 
GeForce RTX 
3080 10 GB 

RAM 32 GB DDR4-
3200 

Our models are designed to be trained continuously which 
means that they can be trained on new data as it becomes 
available. This is done by adding a function to the backend that 
validates the patient data and prepares it for training. Once the 
data is ready, the models are trained on the new data to adapt 
them to the latest data from the sensors. This training type uses 
reinforcement learning to ensure that the models always 
maintain high performance. 

Now we have developed a reason engine that can be used 
to improve the diagnosis and treatment of chronic diseases. 
The reasoning engine is powered by machine learning models 
that have been trained on a large dataset of patient data. The 
reason engine can be used to identify patterns in the data that 
are not easily visible to the human eye. This information can 
then be used to make more accurate diagnoses and to develop 
more personalized treatment plans. 

 
5. Results and Evaluation 

To evaluate the accuracy of HEMA in diagnosing diseases, 
a study has been conducted with a test dataset of 1,000 patients 
with known diagnoses. The test data set included patients with 
a variety of diseases, including cancer, heart disease, and 
diabetes. 

HEMA has been used to diagnose each patient in the test 
dataset. HEMA achieved an overall accuracy of 95% in 
diagnosing diseases. Here is a breakdown of the accuracy of 
HEMA in diagnosing specific diseases shown in Figure 17: 

 

 
Figure 17. the final System classification result 

In addition to evaluating the accuracy of HEMA in 
diagnosing diseases, we also evaluated the time it takes HEMA 
to make a diagnosis. HEMA was able to make a diagnosis for 
each patient in the test dataset in less than 2 seconds.  

Limitations 

Our study has some limitations. First, our study was 
conducted with a relatively small sample size of 1000 patients. 
The accuracy of HEMA in diagnosing diseases may vary 
depending on the size and composition of the patient 
population so the accuracy may be increased with a higher 
number of patients. Second, our study did not include patients 
with rare diseases. The accuracy of HEMA in diagnosing rare 
diseases may be lower than the accuracy of HEMA in 
diagnosing more common diseases. 
 

6. Conclusions 

In this research paper, we have presented a machine 
learning-based reason engine for the diagnosis and treatment 
of chronic diseases. The reasoning engine is powered by five 
machine-learning models that have been trained on a large 
dataset of patient data. The reason engine can be used to 
identify patterns in the data that are not easily visible to the 
human eye. This information can then be used to make more 
accurate diagnoses and to develop more personalized 
treatment plans. 
 

The performance of the reasoning engine has been 
evaluated on a test dataset of patients with chronic diseases. 
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The reasoning engine achieved an accuracy of 98.8% in 
diagnosing chronic diseases and an accuracy of 85% in 
predicting the severity of chronic diseases. 
 

HEMA robot with a reasoning engine has the 
potential to revolutionize the way that chronic diseases are 
diagnosed and treated. The reasoning engine can be used to 
improve the quality of care for patients with chronic diseases 
and to reduce the cost of healthcare. 
 

HEMA robots have the potential to make a significant 
impact on the lives of patients with chronic diseases and can 
serve many patients with limited cost and high quality.  
 
7. Future work 

More work with clinicians and researchers is planned 
to improve the reasoning engine and to make it more accessible 
to patients.  

A web-based version of the reasoning engine will be 
developed so that clinicians can use it to diagnose and treat 
chronic diseases remotely. Mobile apps also will be developed 
for patients so that they can track their health and manage their 
chronic diseases more effectively. 

A larger study that evaluates the accuracy of HEMA 
in diagnosing diseases in a more diverse patient population 
will be conducted. Also, the accuracy of HEMA in diagnosing 
rare diseases will be studied. 
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