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Abstract- In the current study, the theory of fractional calculus is 
applied to the electric parallel RLC circuit. The aim of this article 
is to alter the concept of a parallel RLC circuit by applying 
various fractional derivative operators. A fractional RLC circuit 
was investigated via Caputo, Caputo-Fabrizio, and Atangana-
Baleanu derivatives. The Laplace transform technique was 
applied to resolve the system of governing differential equations. 
The results for the various orders are compared to each other. 
When the fractional order derivative tends to be one, the system's 
performance is found to be very slow due to a decrease in 
damping capacity.  
Keywords- Fractional calculus, RLC circuit, Caputo fractional 
derivative, Caputo-Fabrizio fractional derivative, Atangana-
Baleanu fractional derivative. 
 

I. Introduction 

Many research fields use fractional calculus, including 
automatic control, medical applications, civil engineering, 
time series, and long memory effect modeling [1-8]. The most 
commonly used definitions of fractional calculus are the 
Riemann-Liouville and Caputo derivatives with fractional 
orders, but they have a singularity [9]. Caputo-Fabrizo 
overcame this problem by devising a new fractional derivative 
based on the exponential function with no singularity. [10, 11]. 
The mathematical properties of Fabrizo were developed by 
Atangana [12]. Atangana-Baleanu introduced another 
definition of Caputo-Fabrizio based on the Mittag-Leffler 
function into the fractional derivative, which many researchers 
have used in their articles [13, 14]. 
A resistance, capacitor, and inductor (RCL) circuits are found 
in almost every electrical device. The responses of a parallel 
RCL circuit will be analyzed using various fractional 
derivative operators.  
In this paper, we will compare the performance of fractional 
RLC circuits based on Caputo, Caputo-Fabrizo, and Atangana-
Baleanu fractional derivatives. It is organised as follows: basic 
information is explained in the next section. In section 3, we 
present the mathematical model that represents the various 
currents in a fractional parallel RLC circuit. Section 4 
discusses case studies. Finally, section 5 summarizes this 
paper's contribution. 

II. Basic Information 

This section contains various fractional calculus definitions 
and properties.  
2.1 Riemann-Liouville integral operator 

 The Riemann-Liouville integral operator of 	order 𝛼 ≥ 0 of 
the function is defined by  

𝐽!"𝑣(𝑡) = 	(
(𝑡 − 𝑠)"#$	𝑣(𝑠)

⌈(𝛼) 	𝑑𝑠
%

!

																			(1)			 

Where ⌈(𝛼) is the gamma function. As special case, 
when	𝑎 = 0 , we can write  	𝐽!" = 𝐽" 
 
2.2 Caputo fractional derivative 
 The Caputo fractional derivative of order 𝛼	of the function 
𝑣(𝑡) is defined by [21]  

𝐷!"𝑣(𝑡) = 𝐽!#$"
𝑑#

𝑑𝑡# 𝑣
(𝑡) = )

(𝑡 − 𝑠)#$"$%	𝑣#(𝑠)
⌈(𝑚 − 𝛼) 	𝑑𝑠																					(2)					

&

'

 

When 𝑎 = 0 we write 𝐷 = 𝐷"!
"   

 The Laplace transform of (2) is defined by 

					𝐿[𝐷"𝑣(𝑠)] = 𝑠"𝑣(𝑠) −3𝑠"#&#$
'#$

&()

𝑣&(0)																													(3)					 

When  𝑛 = [𝑅(𝛼)] + 1 . From this expression we have two 
special cases 
𝐿[𝐷"𝑣(𝑡)] = 𝑠"𝑣(𝑠) − 𝑠"#$	𝑣(0)		, 0 < 𝛼 ≤ 1	                  (4) 
𝐿[𝐷"𝑣(𝑡)] = 𝑠"𝑣(𝑠) − 𝑠"#$	𝑣(0) − 𝑠"#*𝑣+(0)		,				1 < 𝛼 ≤ 2		(5) 
 

2.3 Caputo - Fabrizio fractional operator 
The Caputo- Fabrizio fractional derivative is defined by [10, 
11] 

𝐷#∝	𝑣(𝑡) =
𝑀(𝛼)
1 − 𝛼!

%& 6𝑣'(𝑠)
#

!

𝑒("
#()
*("	𝑑𝑥													(6)																 

Where 𝑀(𝛼)  is a normalization function such that 𝑀(0) =
𝑀(1) = 1 
The Laplace transform of (6) is defined by  

𝐿;	 𝐷%∝	𝑣(𝑡))
-. < =

𝑠𝑣(𝑠) − 𝑣(0)
𝑠 + 𝛼(1 − 𝑠) 																																						(7)																							 

2.4 Atangana – Baleanu fractional operator 
     The Atangana – Baleanu fractional derivative is defined by 
[15-20] 

𝐷#∝	𝑣(𝑡) =
𝑀(𝛼)
1 − 𝛼+

,-. 6𝑣'(𝑠)
#

+

𝐸" =−𝛼	
(𝑡 − 𝑠)"

1 − 𝛼 	> 	𝑑𝑠																		(8)																				 

    	The	Laplace	transform	of	(8)	is	defined	by		
𝐿[ 𝐷#∝	𝑣(𝑡)] =

𝑀(𝛼)
1 − 𝛼+

,-. 	
𝑠"𝑣(𝑠) − 𝑠"(*𝑣(0)

𝑠" + 𝛼
1 − 𝛼

				(9)																	
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III. Mathematical Model 

	

	

	

	

                                                    
                  Figure 1. Parallel RLC circuit. 

Consider	 the	 circuit	 shown	 in	 figure	 1,	which	 includes	 a	
resistor,	capacitor	and	inductor	connected	in	parallel,	with	
𝑖/(0) = 𝑖0	 representing	 the	 initial	 inductor	 current,	
𝑣%(0) = 𝑣0	 	indicating	 the	 initial	 capacitor,	 and	 𝑖1(𝑡)	
showing	the	current	source	[27].	
Where	𝑖2	is	the	resistor	current,		𝑖/	is	the	inductor	
current,		𝑖%	is	the	capacitor	current	and	𝑣(𝑡)	is	the	voltage	
source	of	the	circuit	in	figure	1.			
The	governing	mathematical	equation	of	the	circuit	is	

𝐶𝐷#
3𝑣(𝑡) + *

/
𝑗"𝑉(𝑡) + *

2
𝑉(𝑡) + 𝑖! = 𝑖1(𝑡)	    (10) 

Since	α	and	β	are	the	voltage	and	current	parameters	of	a	
fractional	order	inductor	and	capacitor,	respectively	[26].	
From	equation	10,	using	the	Caputo	fractional	operator	in	
the	 Laplace	domain,	 the	 voltage	 of	 the	 capacitor	may	be	
represented	as	

𝑣.*(𝑠) =
𝑠"43(*𝑣%(𝑜) +

1
𝐶 𝑠

"𝐼1(𝑠) −
1
𝐶 𝐼!𝑠

"(*

𝑠"43 + 1
𝑅𝐶 𝑠

" + 1
𝐿𝐶

											(11)	

In	the	Laplace	domain,	the	voltage	of	the	capacitor	using	
the	Caputo-Fabrizo	fractional	operator	can	be	expressed	
as	

𝑣.5(𝑠) =
𝑠 + 𝛽(1 − 𝑠)	o𝐼1 −

𝐼!
𝑠 p + 𝐶𝑣%(0)

𝐶𝑠 + q𝑠 + 𝛽(1 − 𝑠)r	o1𝐿 𝑠
(" + 1

𝑅p
																			(12)		 

     
In	the	Laplace	domain,	the	voltage	of	the	capacitor	can	be	
represented	as	using	the	Atangana	–	Baleanu	operator	
	

𝑣/0(𝑠) =
𝐶𝑀(𝛽)𝑠𝛽−1𝑣𝑐(0) + (𝑠𝛽 − 𝛽𝑠𝛽 + 𝛽) 	?𝐼𝑠(𝑠) −

𝐼𝑜
𝑠 @

𝐶𝑀(𝛽)𝑠𝛽 + (𝑠𝛽 − 𝛽𝑠𝛽 + 𝛽) ?1𝐿 𝑠
−𝛼 + 1

𝑅@
						 (13)			

	
IV Case Study 

In	this	section	we	will	discuss	an	example	to	describe	the	
under	damping	(namely	figures	2,	3,	4,	6,	7,	8	and	9),	over	
damping	(e.g., figures 6, 10 and 11)	and	critical	damping	
response	(figure	12).	The	model's	parameters	were	chosen	
as 	I6(t) = 4u7(t)	, i8	(0) = 0, v9(0) = 0, R	 = 60	Ω, 	 𝐿 =
200	𝑚𝐻, 𝐶 = 120	𝑚𝐹.  
We	 obtained	 the	 following	 time	 response	 for	 the	 RLC	
circuit	 based	 on	 different	 values	 of	 α 	and 	β 	by	 using	
FORTRAN	code	for	finding	the	inverse	Laplace	transform	
for	equations	(11,	12	and	13).		

	

 
    Figure 2. Numerical results for RLC circuit based on Caputo fractional 

operator; for 𝛂 = 𝟎. 𝟗𝟓	, 𝟎. 𝟗𝟕 and 1 with 𝛃 = 𝟎. 𝟗𝟓.

 

    Figure 3. Numerical results for RLC circuit based on Caputo-Fabrizo 

fractional operator; for 𝛂 = 𝟎. 𝟗𝟓	, 𝟎. 𝟗𝟕 and 1 with 𝛃 = 𝟎. 𝟗𝟓. 

	
	

	
		Figure 4. Numerical results for RLC circuit based on Atangana – 

Baleanu fractional operator; for 𝛂 = 𝟎. 𝟗𝟓	, 𝟎. 𝟗𝟕 and 1 with 𝛃 = 𝟎. 𝟗𝟓. 
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Figure 5. Numerical results for RLC circuit in the classical case; for   
𝛂 = 𝛃 = 𝟏. 
 

       
             
Figure 6. Numerical results for RLC circuit based on Caputo fractional                                                             
operator; for 𝛂 = 𝟎. 𝟔	, 𝟎. 𝟕 and 0.8 with 𝛃 = 𝟎. 𝟗𝟓 .                
                                                            
 

 
Figure7. Numerical results for RLC circuit based on Caputo fractional 
operator; for 𝛂 = 𝟎. 𝟗𝟓	, 𝟎. 𝟗𝟕  and 1 with β=0.96. 
 
 
 
 
 
 

 
 
 

 
 

Figure8. Numerical results for RLC circuit based on Caputo-Fabrizo 
fractional operator; for 𝛂 = 𝟎. 𝟗𝟓	, 𝟎. 𝟗𝟕   and 1 with β=0.96. 
 

      
 
Figure 9. Numerical results for RLC circuit based on Atangana- Baleanu   
fractional operator; for 𝛂 = 𝟎. 𝟗𝟓 , 𝟎. 𝟗𝟕 and 1 with 𝛃 = 𝟎. 𝟗𝟓.       
 
           
 

   
Figure10. Numerical results for RLC circuit based on Caputo-Fabrizo 
fractional operator; for 𝛂 = 𝟎. 𝟔	, 𝟎. 𝟕  and 0.8 with 𝛃 = 𝟎. 𝟗𝟓.                 
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Figure11. Numerical results for RLC circuit based on Atangana- Baleanu   
fractional operator; for 𝛂 = 𝟎. 𝟔	, 𝟎. 𝟕  and 0.8 with 𝛃 = 𝟎. 𝟗𝟓. 
 

 
 
Figure.12. Numerical results for RLC circuit based on Caputo, Caputo 
Fabrizo and Atangana- Baleanu fractional operators; for 𝛂 = 𝛃 = 𝟎. 𝟖. 
 

Conclusions 

The mathematical solutions of a fractional RLC circuit were 
studied using Caputo, Fabrizo, and Atangana-Baleanu 
fractional derivatives with various values of		α		and	β.  
For all fractional operators, decreasing the fractional 
inductance operator ( 𝛼 ) reduces the amplitude of the 
oscillation while increasing its damping capacity. 
We note that from the figures, the transition between damping 
cases may be achieved by changing the values of fractional 
parameters α and	β. The under damping case was obtained 
(from α	and β which equals 0.95 to 1), over damping response 
(its α value between 0.6 and 0.7 and β equals 0.95) and critical 
damping behavior at α	and β equal 0.8.  
Overshoot is the divergence between the output signal and its 
maximum value; the greater the gap, the lower the system's 
performance. 
As indicated in all previous figures, the responses of this 
system are extremely slow due to decreasing damping capacity, 
as illustrated in figure 5, which represents a classical case. The 
Caputo operator, as shown in figures ( 2, 6, 7 and 12), causes 
the system to be slow with a large overshoot. The Caputo- 
Fabrizo operator, as indicated in figures (3, 8, 10 and 12) and  
Atangana- Baleanu, as illustrated in figures (4, 9, 11 and 12), 
compares the response of these models with Caputo- Fabrizo 
and Atangana- Baleanu are very quick with a relatively modest 

overshoot. As a result, the caputo operator is unsuitable for 
usage in this model. 
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