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Abstract- The contemporary era underscores the paramount 

significance of the water sector, largely due to dwindling 
resources and the exponential growth of the global population. 
Consequently, there is a pressing need to emphasis the vital role 
of desalination processes in addressing these challenges. In 
recent times, nations worldwide have shifted their focus towards 
optimizing treatment facilities. This optimization is pursued 
through the enhancement of plant efficiency and the 
amalgamation of diverse desalination technologies. The latter 
strategy has demonstrated its efficacy in augmenting on-ground 
productivity. Within this context, we embark on an exploration 
of the world's foremost desalination facilities, delving into their 
production capacities and their hybridization status. 
Furthermore, we delve into the pivotal dimension of integrating 
renewable energy sources into these processes, acknowledging 
the substantial energy demands that desalination inherently 
entails. It is evident that countries in the Middle East have 
showcased a noteworthy inclination towards hybridization 
endeavors, which have yielded substantial improvements in 
station productivity. Notably, the RO-MSF hybrid system has 
emerged as a highly reliable choice among the various 
hybridization schemes employed in operational plants. The 
Middle East, in particular, has substantially bolstered its 
presence in the global landscape of operational hybrid plants, 
amassing a staggering total production capacity exceeding 17 
million cubic meters per day. This attests to the region's 
remarkable commitment to securing sustainable water resources 
through innovative desalination approaches. 

Keywords- Hybridization, Operational Desalination plant, 
Renewable Energy Integration, Sustainability 

I. INTRODUCTION 

The depletion of freshwater reservoirs is accelerating due 
to the growing global need for water resources. This 
heightened demand arises from increased requirements for 
natural resources and is exacerbated by the influence of 
climate change, particularly impacting arid, coastal, and 
inland regions. It is crucial to acknowledge that water and 
energy represent indispensable assets for sustaining life on our 
planet. These resources have played a pivotal role in 
facilitating progress and advancement in numerous regions of 
the developed world. However, it is important to note that a 
considerable number of regions in developing countries 
grapple with acute shortages of both freshwater and energy 
resources [1]. In one of its 2012 reports, the United Nations 
Environmental Program (UNEP) highlighted a significant 
finding. According to the report, approximately one-third of 
the global population currently has access to freshwater 

resources essential for their livelihoods. However, the 
prognosis is alarming as it suggests that the majority of the 
world's population will face severe water shortages by the 
year 2025. [2]. 

Within this substantial volume of water, approximately 97% 
constitutes saltwater, leaving a mere 3% as freshwater. 
Furthermore, within this limited freshwater fraction, a 
significant portion, approximately 68.7%, exists in frozen 
form within icecaps or is bound as soil moisture. Figure (1) 
gives a summary for distribution of various water resources 
across the globe. 

The Desalination processes can be categorized based on 
their separation methods into two primary groups: membrane-
based processes, which encompass RO and ED, and thermal-
based processes, which include MSF, TVC, MED, and HDH. 
Figure (2) shows the percentage of global desalination 
capacity by process. 

 
Figure 1. Distribution of water resources across the globe [4]. 

 
Figure 2. Global desalination capacity by process [5]. 
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Indeed, the choice of desalination technology, be it 
membrane-based or thermal, comes with a distinct array of 
pros and cons. The selection of a specific desalination process 
should be guided by a comprehensive evaluation of numerous 
factors, contingent upon the intended purpose and objectives, 
as exemplified in reference [3]. 

II. SELECTION OF DESALINATION-PROCESS 

When selecting a desalination method for a specific 
application, several factors necessitate careful examination. 
These encompass the quantity of freshwater needed for the 
application and the versatility of the available desalination 
techniques. Additionally, the assessment should encompass 
the process's energy efficiency, its compatibility with solar 
energy integration, the prerequisites for saltwater treatment, 
and the initial capital costs associated with procuring 
equipment and imported materials. The consideration of land 
area required for equipment installation, the potential 
availability of such land, and the robustness and user-
friendliness criteria are all pivotal. Additionally, attributes 
like low maintenance requirements, compact size, and ease of 
transportation to the worksite carry significant weight. 
Furthermore, garnering acceptance and support from the local 
community while minimizing social disruptions is essential, 
as is having a local organization that demands minimal 
training [6]. 

Desalinated water on a global scale can be categorized into 
three primary types: seawater, brackish water, and wastewater. 
Notably, a substantial concentration of high-capacity 
desalination facilities is situated in the Middle East region. 

 
Figure 3. Global distribution of desalination capacities (million 

m3/day) as of 2013 [9]. 

 The Persian Gulf, Gulf of Oman, and Red Sea, areas 
grappling with acute shortages of potable water, collectively 
contribute to a remarkable 65% share of the worldwide water 
desalination capacity [7], [8]. The geographical distribution of 
desalination capacities worldwide is visually depicted in 
Figure 3. 

III. HYBRID DESALINATION SYSTEM  

The hybrid desalination method involves the integration of 
multiple technologies to achieve superior solutions and reduce 
costs compared to individual processes. Desalination 
commonly employs distillation and membrane-based 
techniques, which can be amalgamated to create a more 
economically efficient procedure when employed in a hybrid 
context. In a hybrid configuration, two or more desalination 
processes can be seamlessly incorporated or connected with a 
power plant, enabling the cost-effective production of water. 
Table (I) describe the most important Hybrid system 

Table I. Major findings of most important Hybrid system 

Hybrid 
System Major Findings 

RO-MSF 

• Emphasize hybridization [10], [11]. 
• Hybrid desalination configurations [10]. 
• Water reduction cost by 23–26% [12]. 
• Small scale hybrid solar-wind MSF-RO water cost 

(1.35–1.84 $/m3) [13]. 
• Reduce product water operation / maintenance 

expenses and increasing recovery and lowering 
energy consumption [14]. 

• Increase usable life of the RO membrane 3- 5 years, 
decrease yearly membrane replacement cost 40% 
[15] 

• Optimization methodology - fully integrated tri-
hybrid power-MSF-RO plants [15]. 

• A hybrid MSF/RO, MSF fed by brine reject of the 
RO [16]. 

• The blow downstream leaving the MSF plant used as 
a feed to the RO plant [16]. 

• Economic impact [17] 
• Minimum water cost of 7 different designs of 

RO/MSF [18], [19]. 
• Pretreatment of seawater using nano-filtration (NF) 

membranes [20], [21]. 

RO-MD 

• Overall system recovery could be improved from 
30 to 35% for standalone RO to more than 76% 
[22] 

• Using AGM (a water recovery of RO-MD that more 
than 80%) [23]. 

• Cost of the thermal energy source [24]. 
• Mitigating strategies of integration [25], [26]. 
• Various configurations of MD-RO hybridization 

[27]. 
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RO-HDH 

• Using RO brine as feed water of HDH unit [28]. 
• Improved GOR of 20 / equivalent electricity 

consumption of 9.5 kWh/m3 [29] 
• Exergy analysis (50% largest exergy destruction by 

the TVC) [30]. 
• Improving the hybridization by introducing a Pelton 

turbine or pressure exchanger [31]. 

MED/ 
MSF-MD 

• Integrating multi-effect VMD and AGMD with a 
commercial-scale MSF [32]. 

• Optimized the thermal coupling network of MED 
and MD combined production of 3850 tons/day 
[33]. 

• Several configurations of hybridizations processes 
unit cost of MED-MD 4.93 MM$/y, 10% less than 
that of MSF-MD [34].  

• A geothermal-based MED-DCMD hybrid system 
for multi- generation of cooling-power-desalination 
[35]. 

• MED-MD hybrid desalination system with different 
configurations of MD [36]. 

• a parallel feed 3-stage MED with spray nozzle 
header and silica gel AD bed, using potable water 
as feed water [37]. 

• dual-purpose power and desalination plant 
operation, the life-cycle unit water cost of MED-
AD [38]. 

• Optimization of solar-powered MED-AD using 
high salinity Gulf seawater [39]. 

• Integrated MED-AD hybrid system with a nominal 
production capacity of 10 m3 /day with real saline 
water from Red Sea [40]. 

MED/ 
MSF-AD 

• AD to bring the last stage temperature of MED to 
below ambient through the addition of AD cycle 
[41]. 

• AD as the downstream to take up vapor extracted 
from the last effect of MED [42]. 

MED/ 
MSF-VC 

• Increase energy efficiency, distillate production and 
minimize operational costs [43]. 

• MED-VC configuration, part of the steam generated 
in the previous effect is taken, compressed, and fed 
to the first effect [44]. 

• One of the largest MED-TVC desalination plants is 
Yanbu II [45]. 

• MED-MVC up to 5000 m3 /day/unit [46]. 
• Zero-liquid discharge (ZLD) system to treat 

desalination brine with total dissolved solids of more 
than 70,000 mg/L [47]. 

• MED-TVC plants design [48] thermodynamic 
analysis [49], [50] ejector, improve the performances 
of TVC [51], [52]. 

•  A pressure regulated method optimize [53]. 
• The addition of an auxiliary entrainment [54]. 
• flow patterns effect of ejector [55]. 
• Ejector efficiency Improvement by 14% [56]. 
• non equilibrium condensation phenomena [57]. 
• The dynamic behaviors of MED-MVC and MED-

TVC [58]. 
• MED-TVC system with a parallel/cross flow 

configuration [59]. 
• Optimization MSF with brine circulation and TVC 

[60]. 

HDH 

• Humidification-dehumidification - water flashing 
evaporation [61]. 

• HDH-SS integrated with solar air-water heater [62]. 
• HDH hybrid with solar distiller [63]–[65]  with 

different configurations [66] 

 

IV. DESALINATION TECHNOLOGIES AND ENERGY 

 Water, energy, and desalination are intricately 
interconnected, and this interrelation will become even more 
pronounced with the global population's growth and evolving 
consumption patterns, leading to heightened demands for 
water resources. Presently, a significant portion of 
desalination facilities is situated in areas where conventional 
energy sources are readily accessible and cost-effective. Table 
(II) illustrate the energy requirements of the main desalination 
techniques. Assessing the quantity of conventional energy 
necessitated by desalination processes, is crucial for 
understanding the imperative need to transition towards 
renewable and sustainable energy sources. 

Desalinating both saltwater and brackish water holds the 
promise of addressing the escalating global demand for 
freshwater resources. However, this approach faces 
sustainability challenges due to its substantial energy 
requirements, largely sourced from fossil fuels. Accessing 
these energy sources can be particularly challenging in remote 
regions, and their costs are notoriously volatile. Notably, 
certain Middle Eastern nations, like Qatar and Kuwait, are 
heavily reliant on desalinated water for both domestic and 
commercial purposes. [67]. 

Table II. Energy requirements of the main desalination techniques 
[68]. 

 
Typical 
unit size 
(m3 /d) 

Electrical 
Energy 

Consumpti
on (kWh/ 

m3) 

Thermal 
Energy 

Consumpti
on (kJ/ kg) 

Total 
Equivalent 

Energy 
Consumpti
on (kWh 

/m3) 

MSF 50,000 - 
70,000 4 – 6 190 - 390 13.5 - 25.5 

(TVC) 10,000 - 
35,000 1.5 – 2.5 145– 390 11 – 28 

MED 5,000 - 
15,000 1.5 – 2.5 230– 390 6.5 - 11 

MVC 100 - 2500 7 - 12 None 7_ 12 

RO 24,000 3 – 7 None 3 – 7 

ED 24,000 - 
145,000 2.6 – 5.5 None 2.6 – 5.5 
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Renewable energy desalination (RED) systems are 
experiencing a surge in popularity on a global scale, with the 
inauguration of over 130 RED plants in recent years [69]. 
Figure 4 illustrates the worldwide distribution of contributions 
from various renewable energy sources to desalination 
technology. There are two primary approaches for integrating 
a desalination plant with renewable energy: a direct 
connection or feeding the generated power into the electrical 
grid to offset the intermittent nature of renewable energy 
sources [70]. 

 
Figure 4. Distribution of renewable energy powered desalination 

technologies [71]. 
Multiple technical pairings can be established between 

desalination systems and renewable energy sources. Table (III) 
provides an overview of these potential combinations. 
Nevertheless, it's essential to note that not all of these 
combinations have been subjected to real-world testing and 
validation. 

Table III. Possible combinations of renewable energy with 
desalination technologies [72]. 
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V. COMMERCIALLY -OPERATIONAL HYBRID 
DESALINATION PLANTS 

There are roughly 16,000 operational desalination plants 
dispersed across 177 countries, collectively producing an 
estimated 95 million cubic meters per day of freshwater. 

Table (IV) presents a comprehensive overview of the most 
significant desalination plants located in various countries 
worldwide. It includes details such as the water production 
capacity and the specific desalination technology employed. 
Notably, the table highlights the substantial and noteworthy 
disparity in production capacity between single-technology 
plants and hybrid plants. The keen interest of countries in 
hybridization processes can be attributed to their heavy 
reliance on desalination techniques as the primary source of 
water supply. 

Table (V), which consolidates data on the most crucial 
operational hybrid plants, vividly underscores that Middle 
Eastern nations have emerged as leaders in the realm of hybrid 
desalination. Notably, the three largest countries in the 
region—Saudi Arabia, the United Arab Emirates, and 
Kuwait—rely entirely on water desalination for their 
freshwater supply. It's important to note that the integration of 
renewable energies into desalination plants or their direct 
utilization has not been widely implemented on the ground, 
despite the fact that certain countries in the region have 
established facilities for generating electricity from renewable 
energy sources. 

Table IV. The most important operational Desalination plant [71]. 
 

Location Capacity 
(m3/day) 

Process 
type 

Plant 
Type 

Algeria 

Arzew 
[73] 90,000 RO/ NF 

Power 
dual 

purpose 
Cap 

Djinet 
[74] 

100,000 RO 
Energy 

Recovery, 
Inc. (ERI) 

Aruba Aruba 
[75] 

44,000 (RO) 
3,000 (IE) 

RO / ION 
EXCHA

NGE 

Power 
dual 

purpose 

Bahrain 

Al Hidd 
[76] 272,760 MFD 

Independe
nt Water & 

Power 
Plant 

(IWPP) 
Durrat Al 
Bahrain 

[77] 
36,000 RO 

Power 
dual 

purpose 

China Tianjin 
[78] 200,000 RO 

combinatio
n 

desalinatio
n and coal-

fired 



 
                                                                                            
                                                                                              Journal of Engineering Research (ERJ) 
                                                                                                             Vol. 7 – No. 5, 2023 
                                                                                          ©Tanta University, Faculty of Engineering 

ISSN: 2356-9441                                                                 https://erjeng.journals.ekb.eg/                                                                e ISSN: 2735-4873 

 

doi: 10.21608/erjeng.2023.235480.1238 
93 

 

power 
plant 

Hong 
Kong [79] 137,000 RO  

Egypt Dahab 
[80] 15,000 RO  

India 

Minjur 
[81] 10,000 RO  

Nemmeli, 
Chennai 

[82] 
100,000 RO  

Iran 
Chabahar-
Kenarak 

[83] 
35,000 RO/MSF  

Israel 

Ashkelon 
[84] 330,000 RO  

Palmachi
m [85] 124,000 RO  

Hadera 
[86] 348,000 RO  

Sorek [87] 625,000 RO  

Sorek 2 
[88] 570,000 RO  

 Ashdod 
[89] 274,000 RO  

Malta Ghar 
Lapsi [90] 50,000 RO 

energy 
recovery 
devices 
(ERDs) 

Mexico 
Morocc

o 

Rosarito 
[91] 380,160 RO  

Chtouka 
[92] 753,425 RO  

Casablanc
a [92] 684,930 RO  

Jorf 
Lasfar 
[93] 

109,589 RO  

 
Oman 

Dakhla 
[94] 82,190 RO  

Sur [95] 80,000 RO  

Qarn 
Alam [95] 45,000 RO 

Power 
dual 

purpose 
Al Najdah 

[96] 200 FO  

Al Khaluf 
[97]  FO  

Qatar 
Ras Abu 
Fontas 
[98] 

160,000 (MSF)  

Pakista
n 

Gwadar [9
9] 

254,000 
gallons/day RO  

Saudi 
Arabia 

 

Jubail 
[100] 1,400,000  

MED/RO 

Power 
dual 

purpose 

Jeddah 
[100] 

12.5 million 
gallon/day  MSF/RO 

Power 
dual 

purpose 

Ras Al-
Khair [88] 1,036,000 MSF/RO 

Power 
dual 

purpose 

Yanbu 
[101] 146,160 

9 MSF 
units and 
one RO 

plant 

 

Shuaiba 3 
[88] 880,000   

Singapo
re 
 
 

TuasSprin
g [102] 318,500 UF / RO 

Power 
dual 

purpose 
Jurong 
Island 
[103] 

130,000 RO 
Power 
dual 

purpose 

South 
Africa 

Mossel 
Bay [104] 15,000 RO  

Transnet 
Saldanha 

[105] 
2,400 RO 

Energy 
recovery 
system 

Knysna 
[106] 2,000 RO  

Plettenber
g Bay 
[107] 

2,000 RO  

Bushman'
s River 
Mouth 
[108] 

1,800 RO  

Lambert's 
Bay [109] 1,700 

RO 
/  dual 
media 

pressure 
filters 

 

Cannon 
Rocks 
[110] 

1800 RO  

United 
Kingdo

m 

Thames 
0 [111] 150,000 RO  

Jersey 
[112] 6,000 MSF / 

RO  

United 
States 

El Paso, 
Texas 
[113] 

27,500,000 
gallons/day RO  

Carlsbad 
(Californi
a) [114] 

50 million 
gallons/day RO  

Concord 
(Californi
a)    [115] 

20 million 
gallons/day RO  

Santa 
Barbara 

(Californi
a) [116] 

3 million 
gallons/day RO  

Tampa 
Bay 

(Florida)  
[117] 

95,000 RO  

Gibralt
ar 

Gibraltar 
[118] 6,300 MSF/RO 

Power 
dual 

purpose 
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Kuwait Kuwait 
[119] 1.65 million MSF/RO 

Power 
dual 

purpose 

United 
Arab 

Emirate
s 

Kalba 
[120] 15,000 RO  

Taweelah 
[88] 909,200 RO  

Fujairah 
F2 [121] 591,000  MED-

RO 

Power 
dual 

purpose 
Umm Al 
Quwain 

[88] 
682,900 RO  

DEWA 
Station M, 

Dubai 
[88] 

636,000 MSF 
Power 
dual 

purpose 

 

VI. HYBRID DESALINATION PROCESS OBSTACLES AND 
CHALLENGES  

The most important challenges can be summarized in main 
factors:  

• Unique circumstances, such as the need for plant 
remediation or upgrades, regional disparities in energy 
expenses, and location-specific considerations regarding 
raw material costs [122]. 

• Dealing with tube scaling issues in Multi-Stage Flash 
(MSF) and addressing membrane fouling problems in 
Reverse Osmosis (RO) [123]. 

• The complexity in effectively integrating hybrid 
renewable energy systems lies in determining the 
optimal design by adopting a system-oriented approach 
[124]. 

• While solar energy is abundant and freely available, the 
hardware required for economically harnessing, 
efficiently collecting, converting it into usable forms, 
and storing it poses significant challenges [125].  

Table V. Operational Hybrid Desalination plant 

Location Capacity 
(m3/day) 

Hybrid 
System 

Powered 
by 

United 
Arab 

Emirate
s 

Fujairah 
F2 [121] 591,000 MED-RO 

Steam 
Power 
plant 

Kuwait Kuwait 
[119] 1.65 million MSF/RO electrical 

power 
Gibralt

ar 
Gibraltar 

[118] 6,300 MSF/RO electrical 
power 

United 
Kingdo

m 

Jersey 
[112] 6,000 MSF / 

RO 
electrical 

power 

Saudi 
Arabia 

Jubail 
[100] 1,400,000 MSF/RO 

Steam 
Power 
plant 

Jeddah 
[100] 

12.5 million 
gallon/day MSF/RO 

Steam 
Power 
plant 

Ras Al-
Khair [88] 1,036,000 MSF/RO 

Steam 
Power 
plant 

Yanbu 
[101] 550,000 

9 MSF 
units and 
one RO 

plant 

Steam 
Power 
plant 

Iran 
Chabahar-
Kenarak 

[83] 
35,000 RO/MSF nuclear 

VII. CONCLUSION  

Several critical observations come to light. Firstly, there is 
an evident scarcity of freshwater resources, and the 
prevalence of saltwater covers the majority of the Earth's 
surface. Secondly, Reverse Osmosis (RO) stands out as the 
dominant and most efficient desalination process. The Middle 
East and Arab Gulf nations have taken the lead in global 
desalination operations, surpassing the 70% mark. A 
noteworthy development in desalination practices is the 
emergence of hybridization techniques and the integration of 
renewable energy sources. This shift is essential because 
desalination processes are notoriously energy-intensive, 
consuming approximately 5 tons of crude oil to produce 1000 
cubic meters of freshwater. 

Of particular significance is the substantial disparity in 
production capacities, which becomes evident when 
employing hybrid systems in real-world applications. The 
Middle East boasts the majority of operational hybrid 
desalination plants globally, collectively capable of producing 
over 17 million cubic meters per day. Among these 
operational hybrid plants, the RO-MSF hybrid system stands 
out as the most effective and widely adopted, underscoring its 
remarkable reliability compared to other hybridization 
systems. 

 
 
Nomenclature 
CSP concentrating solar power 
ED electro dialysis 
EDR Electro dialysis Reversed 
MD membrane distillation 
MED multiple effect desalination 
MEH multiple effect humidification 
MSF multi stage flash 
MVC mechanical vapor compression 
PV Photovoltaic 
RO reverse osmosis 
SD solar distillation 
TVC thermal vapor compression 
RED Renewable energy desalination 
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