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Abstract- Accurate and prompt detection of system faults are 
crucial to maintain sufficient protection of system equipment, 
avoid false tripping, and cascaded failures. This paper presents a 
comprehensive study on the effectiveness of machine learning 
techniques for electrical fault detection and classification. 
Specifically, a comparative analysis is conducted between two 
prominent algorithms: Recurrent Neural Networks (RNNs) and 
Decision Tree (DT). The study employs a dataset comprising real-
world electrical fault scenarios to evaluate the performance of 
RNNs and DT in identifying and categorizing faults. While DT 
algorithm showed slightly better accuracy in some cases, the RNN 
exhibited better generalization capabilities and a lower risk of 
overfitting. The analysis involves various performance metrics 
such as accuracy, precision, recall, and confusion matrices to 
comprehensively assess the algorithms' capabilities. The findings 
provide valuable insights into the strengths and limitations of 
each approach in the context of electrical fault management. This 
paper contributes to the selection of suitable techniques based on 
specific application requirements, advancing the field of 
predictive maintenance and fault mitigation in electrical systems.   
Keywords- Decision Tree, Electrical Faults, Fault Classification, 
Fault Detection, Machine Learning, Recurrent Neural Networks. 

I. Introduction 

Security of power systems is currently threated owing to the 
steady growth of renewable energy resources (RERs) which 
aggravates their complexity and causes voltage instabilities 
raised by their intermittencies [1].  
As transmission systems represent a pivotal role within the 
power system, nowadays, their protection is gaining increased 
popularity owing to the high-power demand and their complex 
structures caused by suboptimal extensions. In this context, the 
advent of high-capacity electrical generating plants and the 
establishment of synchronized grids spanning disparate 
geographical regions necessitate rapid fault detection and the 
seamless operation of protection equipment. This expeditious 
response is crucial to maintaining the power system's stability 
[1]. 
During emergencies, conventional protection systems are 
liable to maloperation caused by inaccurate discrimination 
between recurrent RERs disturbances and incepted faults [2-4] 
which may cause series blackouts [5]. Enhancement of 
conventional protection systems’ identification of faults will 
avoid false triggering incurred by RERs and/or loads 
operational changes thus improving system reliability. The 
malfunctioning of protection systems can be attributed to the 
waveforms resemblance of both normal disturbances and 
system faults [6]. Therefore, it is crucial to prioritize 
efficacious data processing and feature extraction techniques 

for analyzing the operational behavior of such systems. 
Various studies exist on waveforms characterization with the 
central premise of obtaining pronounced markers for accurate 
fault identification [7-14]. An enhanced Fast Fourier 
Transform-based method is devoted for extracting 
distinguished voltage features for identifying voltage dips is 
introduced in [7-9]. 
Post-fault, the harmonic content is analyzed for accurate 
identification of voltage dips in distribution systems in [10]. 
Kalman filter-based algorithms are also involved in [11-12] for 
fault identification in microgrids (MGs). A discrete wavelet 
transform (DWT) integrated with support vector machine 
(SVM) in [13] for fault extraction. Likewise, [14] presented an 
optimized DWT to discriminate transmission system faults. 
Owing to their excellent features extraction capability, deep 
learning (DL) techniques are extensively employed in fault 
detection techniques [15-24]. 
Being a data-driven approach, the parameters of the DL model 
undergo optimization through a loss function, enabling 
automatic feature extraction without manual intervention. In 
[15-19], DL-based approach is employed in fault occurrence 
determination in modular multi-level converter (MMC) via 
processing voltage data. Various voltage dips and other 
disturbance features are being classified through convolution 
neural network (CNN) in [20-21]. A novel intermediate 
distribution alignment (DA) algorithm is introduced in [22] for 
fault transfer diagnosis. Though the aforesaid studies showed 
interesting results regarding fault identification via DL, several 
concerns still exist. For instance, during the fault diagnosis 
phase, the influence of suppression on the judgement output of 
the disturbance state during fault is not considered in several 
works. Besides, DL is adversely influenced by confusing 
samples which aggravates classifier performance. On the other 
hand, increasing model complexity for obtaining precise 
results will result in overfitting and worsening training model.  
Detecting and accurately categorizing faults in transmission 
lines is of paramount importance, demanding swift resolution 
[23]. Effective fault detection systems enable dependable, 
secure, and rapid relay operations, playing a pivotal role in 
maintaining system integrity. Employing pattern recognition 
techniques is advantageous in distinguishing between healthy 
and faulty power systems and identifying fault phases within a 
three-phase power system.  
This paper presents a comparative analysis of the application 
of two distinct machine learning algorithms, RNNs and DT, 
for the detection and classification of electrical faults. With the 
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increasing importance of maintaining the reliability and safety 
of electrical systems, the timely identification of faults is of 
paramount significance. This paper demonstrates the 
effectiveness of artificial intelligence in detecting and 
classifying electrical faults, particularly in a three-phase 
system. 
The rest of the paper is organized as follows. Section 2 
discusses the problem statement, material and methods used in 
the paper is explained in detail in section 3. The proposed 
methodology is discussed in section 4, while the simulation 
results and discussion are discussed in section 5. Finally, the 
paper is concluded in section 6. 

II. Problem Statement 

Conventional methods for detecting faults often rely on 
manual observation and periodic checks, which can lead to 
delays in uncovering issues and recognizing potential hazards. 
As electrical systems become increasingly complex, there is a 
growing need to adopt more robust and automated techniques 
for fault detection. This study aims to address the challenge of 
online electrical fault detection and categorization by 
employing recurrent neural networks. In this proposed 
approach, the input data consists of the three-phase currents 
and voltages from one end of the electrical system. The 
combination of a feedforward neural network and the 
backpropagation algorithm is utilized to detect and classify 
faults, analyzing each of the three phases involved. By 
utilizing real-time data and the sequential characteristics of 
electrical signals, the intended outcome of this method is to 
enhance the accuracy and efficiency of problem identification 
and classification. Such progress leads to optimized 
maintenance schedules and a reduction in costly periods of 
system downtime. To validate the adoption of the recurrent 
neural network, a comprehensive analysis has been conducted. 
This problem statement serves as a foundation for conducting 
a comparative analysis of electrical fault detection and 
classification, involving both the recurrent neural network and 
the decision tree algorithm. 
 

III. Material and Methods 

This section presents the methods utilized for the discovery 
and classification of electrical defects through the application 
of RNN. In order to establish reliable and secure power 
networks, the suggested methodology seeks to enable the 
timely identification of various problem types using real-time 
fault detection. To assure the inclusion of a diverse range of 
fault types, a thorough dataset is developed, spanning multiple 
electrical failure scenarios. The methodology comprises of two 
main stages: data preparation and training. The combination of 
a recurrent neural network with a multi-layered feedforward 
neural network leverages the inherent ability of RNNs to retain 
sequential information, which is then utilized by the 
feedforward network to extract relevant features for making 
predictions. The training process for both components uses the 
backpropagation technique, which involves iteratively 
modifying the weights and biases in order to decrease the 
errors in predictions. 
 

A. System Description and Modelling 

Figure 1 shows the test system [24].  The power system 
configuration comprises four generators 50 MVA operating at 
11 kV. Transformers 11/132 kV are strategically placed within 
the system to facilitate the study of various fault scenarios 
occurring at the midpoint of the transmission line. The data is 
sourced from a MATLAB Simulink model, specifically 
designed to simulate fault analysis in a power system. To 
gather the data, a basic power grid model is created, 
incorporating a transmission line between two power systems. 
The authors utilized the three-phase fault block in MATLAB 
Simulink to generate faults over the transmission line, 
simulating all six types of fault conditions. The line voltages 
and currents at the output side of the power system were 
measured and recorded under both normal operating 
conditions and different fault scenarios. Figure 2 shows the 
SIMULINK model for the test system.  
  

Figure 1. Test System Schematic Diagram. 

 

 
Figure 2. MATLAB Simulink Model for the Test System. 

 
B. Datasets 

The system is simulated under both normal operating 
circumstances and various fault scenarios. Following data 
collection, each data point is meticulously labeled to indicate 
the specific fault condition present during the simulation. 
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These fault labels are assigned based on the type and severity 
of the simulated fault, allowing for accurate training and 
evaluation of machine learning models for fault detection and 
classification. The resulting dataset consists of nearly 12,000 
data points, providing a substantial and diverse collection of 
fault scenarios. The dataset's size and diversity are 
instrumental in developing robust machine learning models 
capable of effectively detecting and classifying various fault 
types. 
 

C. RNN 

The Recurrent Neural Network (RNN) is a distinct type of 
artificial neural network that has been specifically designed to 
effectively process sequential input. RNNs possess the 
capability to effectively handle sequential inputs through the 
utilization of a "hidden state" mechanism, which enables the 
retention of pertinent information on preceding inputs. This 
stands in opposition to conventional feedforward neural 
networks, which operate on inputs in isolation and lack the 
ability to retain information from previous inputs. RNNs 
possess the capability to perform this task due to their inherent 
ability to handle inputs in a non-independent manner. The 
hidden state of a RNN undergoes modification at each time 
step through a weighted combination of the current input and 
the preceding hidden state, with the weights for this 
combination being acquired through prior learning. This 
functionality allows the network to generate predictions by 
leveraging the past input data and effectively capturing the 
temporal relationships within the dataset. RNNs provide a 
diverse range of methods that can be effectively employed for 
addressing time series problems. 
Several types of RNNs exist, with the Long Short-Term 
Memory (LSTM) networks and the Gated Recurrent Unit 
(GRU) networks being the most prominent examples. Both of 
these types of RNNs have been shown to be highly effective in 
detecting and capturing long-term dependencies in sequential 
data. 
The fundamental RNN model, when given an input sequence 
x, aims to forecast a state st at time t. It achieves this by 
including the previous state st-1 through the utilization of a 
differentiable function f. The preceding state encompasses not 
only the data from the preceding time step but can be 
understood as a compressed representation of all preceding 
states. The weight parameters in the architecture of RNNs, 
denoted as U, V, and W, are shared across all layers, as shown 
in Figure. 3 [26]. 
 
𝑠! = 	𝑓(𝑠!"# ∗ 𝑊	 +	𝑥! ∗ 𝑈)																																																				(1) 
𝑦! = 	𝑓(𝑠! ∗ 𝑉)																																																																												(2) 
Where, yt is the output at time step t, V is the weight matrix 
that governs the mapping between the hidden state and the 
output. 

 
(a)  

 
(b) 

Figure 3. (a) RNN Unit (b) Unfolded RNN Unit with Different Time-

Steps State. 

 
RNN models are trained with the objective of minimizing a 
loss function, which quantifies the discrepancy between the 
predicted values and the actual observed values. During the 
training process, the RNN model is initially decomposed into 
its individual recurrent steps, as depicted in Figure 3(b). 
Subsequently, the gradient of the loss function with respect to 
the output state at any given moment is determined. The 
calculated gradient is propagated in a retrograde manner across 
the network across multiple time steps to facilitate the 
completion of the procedure. The subsequent equations denote, 
in sequence, the recurrent associations and the cumulative 
gradients of parameters [26]. 
 
𝜕𝐽

𝜕𝑠!"#	
	= 	

𝜕𝐽
𝜕𝑠!	

	 ∗ 	𝑊																																																																			(3) 

 
Where: $%

$&!	
 is represents the gradient of the loss function with 

respect to the current hidden state at time step t. Similarly, 
$%

$&!"#	
 denotes the gradient of the loss function with respect to 

the previous hidden state at time step t-1. This gradient is 
obtained by backpropagating the gradient through the current 
hidden state at time step t, utilizing the chain rule of 
differentiation. 
𝜕𝐽
𝜕𝑈 =	3

𝜕𝐽
𝜕𝑠!	

(

!)*

∗ 	𝑥𝑡																																																																				(4) 

Where: 𝑥𝑡 represents the current input at time step t, n denotes 
the length of the input vector. $%

$+
 represents the gradient of the 

loss function with respect to the weight matrix U. This weight 
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matrix determines the impact of the current input on the current 
hidden state. The computation of the current hidden state 
involves summing the product of the gradient with respect to 
the current hidden state and the current input over all time steps. 
𝜕𝐽
𝜕𝑊	 	= 	3

𝜕𝐽
𝜕𝑠!	

(

!)*

	 ∗ 𝑠!"#																																																														(5) 

Where: $%
$,	

 represents the partial derivative of the loss function 
with respect to the weight matrix W. This weight matrix 
determines the impact of the previous hidden state on the 
current hidden state. The computation involves summing the 
product of the gradient with respect to the current hidden state 
and the previous hidden state across all time steps. 
 

D. Decision Tree (DT)  

Decision trees are a common and adaptable machine learning 
method that may be used for both classification and regression. 
They are well-known for their openness and the ease with 
which they may be interpreted, qualities that lend them utility 
in fields such as data mining and decision support systems. The 
nodes, branches, and leaves that make up a decision tree are 
known as "decisions," "conditions," and "outcomes," 
respectively, while the "leaves" can reflect final decisions or 
predictions [27]. In order to design a decision tree, one must 
first recursively partition the data based on informative 
characteristics. These features can be chosen based on factors 
such as entropy, Gini impurity, and classification error.  
The Gini impurity metric quantifies the likelihood of 
misclassifying a randomly selected element. Entropy is a 
metric used to quantify the degree of impurity or disorder 
within a given dataset. The classification error metric is 
determined by evaluating the mistake rate, which takes into 
account the proportion of the majority class. 
𝐺𝑖𝑛𝑖	𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦	(𝐼) = 	1	 −	(𝑝*- +	𝑝#-)																														(6) 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦	(𝐻) = 	−	D𝑝* ∗ 	𝑙𝑜𝑔-(𝑝*) +	𝑝# ∗ 	𝑙𝑜𝑔-(𝑝#)G				(7) 
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝐸𝑟𝑟𝑜𝑟	 = 	1	 − 	𝑚𝑎𝑥(𝑝*, 𝑝#)																					(8) 
Where p₀ is the probability of class 0, and p₁ is the probability 
of class 1. 
Decision trees employ several approaches to choose which 
characteristic to split on at each internal node. The concept of 
information gain is used to quantify the decrease in entropy or 
impurity that results from dividing a dataset based on a certain 
attribute. The gain ratio is a metric that takes into account the 
inherent information of each feature when calculating the 
information gain. The Gini index is a metric that quantifies the 
level of impurity within a dataset. It is commonly employed to 
assess the impurity of subsets resulting from a data partition. 
Predictions in decision trees are generated through a process 
of traversing the tree structure, starting from the root node and 
progressing towards a leaf node. This traversal is guided by the 
decision path, which is determined by the results of feature 
tests. The decision-making process involves: 

1. Starting at the root node. 
2. Evaluating the feature associated with the current 

node. 
3. Moving to the child node corresponding to the 

outcome of the feature test. 

4. Repeating steps 2-3 until a leaf node is reached. 
5. Assigning the class label or numeric value associated 

with the leaf node as the prediction. 

Decision trees handle missing values by considering multiple 
routes when encountering a missing value during the traversal. 
For categorical features, the tree can handle them directly by 
splitting based on each category. 
Decision trees come in different flavors to accommodate 
various types of machine learning tasks. In this section, we'll 
explore two primary types of decision trees: Classification 
Trees and Regression Trees. 
Classification trees are used when the target variable is a 
categorical variable, and the goal is to assign input instances to 
one of several predefined classes. At each internal node, the 
algorithm selects the best feature to split the data based on 
criteria like information gain, Gini impurity, or entropy. The 
selected feature's values are used to create child nodes 
corresponding to each possible outcome. The process 
continues recursively until leaf nodes are reached. 
Each leaf node is associated with a class label, representing the 
predicted class for instances that follow that decision path [28]. 
Regression trees are used when the target variable is 
continuous, and the goal is to predict a numeric value. At each 
internal node, the algorithm selects the best feature to split the 
data to minimize variance or another suitable measure. Child 
nodes are created based on the selected feature's values. 
Although there are commonalities between both types of trees, 
such as the utilization of a recursive splitting process, they 
exhibit differences in terms of their output types and 
assessment metrics. Classification trees employ metrics such 
as information gain and Gini impurity to assess the 
effectiveness of splits, whereas regression trees utilize 
measurements such as variance reduction. The evaluation 
metrics are chosen based on the inherent characteristics of the 
target variable, with categorical variables being assessed using 
classification metrics and continuous variables being evaluated 
using regression metrics. 
 

IV Proposed Methodology 

This section presents a comprehensive methodology employed 
in the manuscript. The primary objective of this study is to 
develop and evaluate machine learning models for accurate 
detection and classification of electrical faults. The research 
follows a rigorous and systematic approach, encompassing 
data collection, preprocessing, algorithm selection, model 
training, evaluation, result analysis, and interpretation. Each 
step of the methodology is carefully outlined, highlighting its 
significance in achieving robust and effective fault detection 
and classification outcomes. 

A. Data Collection 

 The foundation of this research lies in the acquisition of a 
comprehensive and representative dataset. Real-world 
electrical system parameters, including voltage, current, and 
corresponding fault labels, were collected using online 
measurements for the SIMULNK model of the system under 
study. The dataset's size and diversity were carefully 
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considered to ensure the models' generalizability and 
applicability to various fault scenarios.  

B. Exploratory Data Analysis (EDA) 

 EDA involves a comprehensive examination and visualization 
of the dataset to gain valuable insights and identify patterns 
that aid in the subsequent stages of the research. To perform 
EDA, various data visualization techniques were employed, 
including histograms, pie charts, and correlation matrices. 
Each visualization technique contributed to a deeper 
understanding of the dataset's characteristics and facilitated 
informed decision-making throughout the research. 
-   Histograms: Histograms provide a clear representation of 

the distribution of different electrical system parameters, 
such as voltage and current. By visualizing the data 
distribution, we could identify potential outliers, assess 
data symmetry, and gain insights into the overall data 
structure. 

-   Pie Charts: Pie charts were utilized to visualize the class 
distribution of fault labels. This allowed us to assess the 
balance of classes and identify potential class imbalance 
issues. A balanced class distribution is essential to ensure 
that the machine learning models effectively capture 
patterns from all fault types. 

-  Correlation Matrices: Correlation matrices provided a 
comprehensive view of the relationships between different 
features in the dataset. Understanding feature correlations 
was critical in identifying multicollinearity and redundant 
features, guiding the feature selection and engineering 
process [26]. Pearson’s correlation formula is given as  

𝑟	

= 	
∑ (𝑥. − �̅�)(𝑦. − 𝑦P)(
.)#

Q∑ (𝑥. − �̅�)-(𝑦. − 𝑦P)-(
.)#

																																																			(9) 

Where, r is the correlation coefficient,	𝑛  is the total values 
number,  𝑥. , 𝑦. are the individual data points in the sample, and 
�̅�, 𝑦P	 are the sample means of the individual values.  
Through the application of these visualization techniques, we 
gained important insights into the dataset's distribution, 
relationships between variables, presence of outliers, and 
potential data quality issues. These insights influenced 
subsequent data preprocessing decisions, such as handling 
missing values, outlier treatment, feature selection, and 
addressing class imbalance.  

C. Data Preprocessing 

Data preprocessing is crucial for enhancing data quality and 
model performance. The collected dataset underwent rigorous 
data cleaning to handle missing values, outliers, and 
inconsistencies. Feature engineering techniques were 
employed to select relevant features and engineer new ones to 
capture essential fault patterns. Furthermore, normalization 
and scaling were applied to standardize the features and 
facilitate the convergence of machine learning algorithms.  

D. Algorithm Selection 

Selecting appropriate algorithms significantly impacts the 
efficacy of fault detection and classification. For this 
manuscript, two main algorithms were chosen: the DT and the 
RNN. The Decision Tree algorithm provides interpretability 

and is suitable for binary classification tasks, making it suitable 
for fault detection. The RNN, with its ability to capture 
complex patterns, is well-suited for more intricate fault 
classification scenarios.  

E. Model Training 

 Model training involved feeding the preprocessed data to the 
selected algorithms. For the RNN, the architecture was 
carefully tailored, including the number of layers, neurons per 
layer, and activation functions. During the training process, 
models adjusted their parameters through backpropagation and 
optimization algorithms to minimize the loss function. Careful 
consideration was given to avoid overfitting, and 
regularization techniques were applied when necessary. 

F. Model Evaluation 

 The performance evaluation of the trained models was a 
crucial step in gauging their effectiveness. The dataset was 
split into training and testing sets to ensure unbiased evaluation. 
Performance metrics such as accuracy, precision, recall, and 
confusion matrices were employed to quantify the models' 
fault detection and classification capabilities accurately.  

V. Simulation Results 

In this study, the effectiveness and robustness of the proposed 
electrical fault detection and classification methods, utilizing 
RNNs and DT, are thoroughly assessed through 
comprehensive simulation experiments. As modern industries 
rely heavily on the seamless operation of electrical systems, 
the early detection and accurate categorization of faults play a 
pivotal role in preventing potential disruptions and ensuring 
safety. 

A. The Electric Fault Detection Dataset 

The electric fault detection dataset comprises 12001 records. 
The attributes are Ia, Ib, Ic, Va, Vb, Vc, and Outputs. The 
variables Ia, Ib, Ic, Va, Vb, and Vc are numeric variables. Ia, Ib, 
Ic, represent line currents of phases A, B, C whereas, Va, Vb, 
Vc stand for phase voltages of phases A,B,C. The variable 
outputs are a categorical variable. It consists of two values, 0 
and 1. The value 0 means there is no fault detected, while the 
value 1 means a fault has been detected. 
 

B. Pre-processing the Electric Fault Detection Data 

Before training the model, the data has to be pre-processed. 
The features are Ia, Ib, Ic, Va, Vb, and Vc. The target variable is 
Outputs (s). The dataset has been splitted into the training set 
and the test set in the ratio of 80:20. 
We used a training set to train the machine learning models 
and the test set to evaluate the performance of the models. 
There are 9600 samples in the training set and 2401 samples in 
the test set. We applied standardization to the dataset to keep 
all of our data in the same range and scale. It also helps our 
machine learning model train faster. 

C. The Electric Fault Classification Dataset 

The electric fault classification dataset comprises 7861 records. 
The attributes are Ia, Ib, Ic, Va, Vb, Vc, G, C, B, and A. The 
variables Ia, Ib, Ic, Va, Vb, and Vc are the same as the ones in 
the electric fault detection dataset. The variables G, C, B, and 
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A are categorical variables. They consist of two values, 0 and 
1. The value 0 means there is no fault detected, while the value 
1 means a fault has been detected. A value of 1 in the G 
variable means there is a fault in the ground. A value of 1 in 
the C variable means there is a fault in Phase C. A value of 1 
in the B variable means there is a fault in Phase B. A value of 
1 in the A variable means there is a fault in Phase A. Table I 
shows how the type of fault is determined according to new 
values of variables A, B, C, G.  

Table I. Fault cases classifications according to A-B-C-G variables. 

Fault Case G C B A 
No Fault 0 0 0 0 

A-G Fault 1 0 0 1 
A-B Fault 0 0 1 1 

A-B-G Fault 1 0 1 1 
A-B-C Fault 0 1 1 1 

A-B-C-G Fault 1 1 1 1 
 
The pie chart in figure 4 shows that there is more data for the 
‘No Fault’ class. The ‘Phase B & C’ class has less data 
compared to the other classes. The ‘Phase A & Ground’, 
‘Phase A, B & Ground’, ‘Phase A, B & C’, and ‘Phase A, B, 
C & Ground’ have similar proportions of data. The dataset has 
imbalanced classes. Table II shows the total number of records 
in each class of the electric fault classification dataset. 
 

 
Figure 4. Proportion of Dataset Classification Pie Chart. 

Table II: Total number of records in each class of the electric fault 
classification dataset. 

Category No of samples 
No Fault 2365 
A-B-G 1134 

A-B-C-G 1133 
A-G 1129 

A-B-C 1096 
B-C 1004 

 
D. Exploratory Data Analysis  

The histogram depicted in Figure. 5 illustrates that the majority 
of values for the Ia variable are concentrated within the interval 
of -100 to 100. The cumulative count does not exceed 200 for 
each number falling outside of the range. Figure. 8 shows the 
histogram of the Va variable, that most of the values fall within 
the range of -0.1 to 0.1. There are also about 800 counts of 

voltages with a value of 0.6. There are about 700 counts of 
voltages with a value of -0.6. The rest of the values are below 
the count of 500. 

Figure 5. Histogram plot of the Ia variable. 
The histogram of the Ib variable in figure 6 shows that most of 
the values fall within the range of -100 to 100. Each of the 
values outside that range is not up to 150 in the total count. 

Figure 6. Histogram plot of the Ib variable. 
 

The histogram of the Ic variable in figure 7 shows that most of 
the values fall within the range of -100 to 100. Each of the 
values outside that range is not up to 100 in the total count. 

Figure 7. Histogram plot of the Ic variable. 

Figure 8: Histogram plot of the Va variable. 
 

The histogram of the Vb variable in Figure. 9 shows that most 
of the values fall within the range of -0.05 to 0.05. There are 
also about 800 counts of voltages with a value of 0.6. There 
are over 800 counts of voltages with a value of -0.6. The rest 
of the values are below the count of 600. 

Figure 9. Histogram plot of the Vb variable. 
 

The histogram of the Vc variable in figure 10 shows that most 
of the values fall within the range of -0.05 to 0.05. There are 
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also about 750 counts of voltages with a value of 0.6 and -0.6. 
The rest of the values are below the count of 550. 

 
Figure 10. Histogram plot of the Vc variable. 

 
Figure. 11 shows the Pearson correlation heatmap for the fault 
detection dataset. A negative correlation of -0.51 between Va 
and Vb means that the value of Va increases, the value of Vb 
decreases. There is also a negative correlation of -0.52 between 
Vb and Vc. There is a negative correlation of -0.53 between Ib 
and Ic. Figure 12 shows the Pearson correlation heatmap for 
the fault classification dataset. The correlation heatmap shows 
a negative correlation of -0.57 between Vb and Vc and a 
negative correlation of -0.53 between Ib and Ic. 

 
Figure 11. Correlation heatmap of the variables in the electric fault 

detection dataset. 

 
Figure 12. Correlation heatmap of the variables in the electric fault 

classification dataset. 
 

E. Results for the Electric Fault Detection Models 

 
After training the recurrent neural network for 100 epochs the 
results obtained are a training accuracy of 99.60%, a training 
precision of 99.64%, and a training recall of 99.50%. 
The decision tree algorithm gave a training accuracy of 
99.77%, a training precision of 99.55%, and a training recall 
of 99.95%. The result is summarized in Table III. Figure 13-
14 show the confusion matrices for RNN and DT performance 
in detection scenario. The recurrent neural network classified 
1083 cases correctly as having an electrical fault (true 
positives). It classified 1299 cases correctly as having no 
electrical fault (true negatives). It wrongly classified 2 cases as 
having electrical faults (false positives). It wrongly classified 
17 cases as having no faults (false negatives). The decision tree 
model classified 1094 cases correctly as having an electrical 
fault (true positives). It classified 1298 cases correctly as 
having no electrical fault (true negatives). It wrongly classified 
3 cases as having electrical faults (false positives). It wrongly 
classified 6 cases as having no faults (false negatives). 

 
Table III: Results for the Electric Fault Detection Models Training. 

Performance 
Metrics 

Recurrent Neural 
Network 

Decision Tree 
Algorithm 

Accuracy 99.60% 99.77% 
Precision 99.64% 99.55% 

Recall 99.50% 99.95% 
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Figure 13. Confusion Matrix for Recurrent Neural Network in Fault 

Detection.  
 

 
Figure 14. Confusion Matrix for Decision Tree in Fault Detection.  

 
F. Results for the Electric Fault Classification Models 

After training the recurrent neural network for 400 epochs the 
results obtained are a training accuracy of 86.18%, a training 
precision of 86.40%, and a training recall of 86.05%. 
The decision tree algorithm gave a training accuracy of 
96.93%, a training precision of 97.27%, and a training recall 
of 96.38%. The result is summarized in Table IV. 

 
Table IV: Results of the Electric Fault Classification Models. 

Performance 
Metrics 

Recurrent Neural 
Network 

Decision Tree 
Algorithm 

Accuracy 86.18% 96.93% 
Precision 86.40% 97.27% 

Recall 86.05% 96.38% 

 
Figure. 15 shows the confusion matrix for RNN in the 
electrical fault classification. The recurrent neural network 
classified 473 cases correctly as having No Fault. It classified 
226 cases correctly as belonging to A-G class. It classified 52 
cases correctly as belonging to A-B-C class. It classified 220 
cases correctly as belonging to A-B-G class. It classified 186 
cases correctly as belonging to A-B-C-G class. It classified 201 
cases correctly as belonging to B-C class. 
The recurrent neural network misclassified 7 cases actually 
belonging to A-B-G class as A-G. It has misclassified 40 cases 
belonging to A-B-C-G class as A-B-C, 1 case belonging to A-
B-C-G class as A-B-C, and 167 cases belonging to A-B-C 
class as A-B-C-G. 

 
Figure 15. Confusion Matrix for Recurrent Neural Network in Electrical 

Fault Classification Problem. 
 

Figure. 16 shows the confusion matrix for DT in the electrical 
fault classification. The decision tree model classified 473 
cases correctly as having No Fault. It classified 224 cases 
correctly as belonging to A & Ground class. It classified 111 
cases correctly as belonging to A-B-C class. It classified 226 
cases correctly as belonging to A-B-G class. It classified 129 
cases correctly as belonging to A-B-C-G class. It classified 200 
cases correctly as belonging to B-C class.  
The decision tree model misclassified 1 case actually 
belonging to B-C class as No Fault. It misclassified 6 cases 
actually belonging to A-B-C-G class as No Fault. It 
misclassified 4 cases actually belonging to A-B-C class as No 
Fault. It misclassified 1 case actually belonging to A-B-G class 
as Phase A-G.  It misclassified 92 cases actually belonging to 
A-B-C-G class as A-B-C. It misclassified 104 cases actually 
belonging to A-B-C class as A-B-C-G. It misclassified 2 cases 
actually belonging to A-G class as A-B-G.  
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Figure 16. Confusion Matrix for Decision Tree Algorithm in Electrical 

Fault Classification Problem. 
 

Conclusions 

This paper has shed light on the critical role of machine 
learning techniques in addressing the challenges posed by 
electrical power system faults detection and classification. The 
analysis, focusing on the comparison between recurrent neural 
networks and decision trees, has provided valuable insights 
into their respective strengths and limitations in the context of 
fault detection and classification. 
The findings of this study underscore the significance of 
accurate and early detection of electrical faults to mitigate 
potential risks and prevent disruptions in industrial operations. 
The results indicate that the recurrent neural network exhibited 
strong performance in detecting faults when compared to the 
decision tree model. While the DT algorithm demonstrated 
slightly superior accuracy in certain scenarios, the RNN 
exhibited its prowess in generalization, showing a lower 
susceptibility to overfitting. This characteristic of the RNN 
becomes particularly vital when dealing with complex, real-
world fault scenarios that may not be well-represented by 
training data alone. 
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