Machine Learning Algorithms to Classify Water Levels for Smart Irrigation Systems

Tahani M Allam, Shrouk Ezzeldin Ali*, Elsayed A. Sallam

Computer and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt
Shrouk.ezz1992@yahoo.com

Abstract- Agriculture is the main source of food. With the passing of time, there are dangers in order to preserve the freshwater in agriculture sector. Thus, one of solutions to save the freshwater is enhancing the wastewater. Machine learning (ML) algorithms are used in several applications, such as smart irrigation, to reduce freshwater loss via building high-performance ML algorithms. This paper proposes four algorithms: support vector machine (SVM), decision tree (DT), SVM with Adaboost, and DT with Adaboost to classify water levels of sprinklers for smart irrigation. Here, five levels of water are classified—Max, High, Medium, Low, and Stop. The proposed algorithms are tested to obtain which algorithm achieves better performance and higher accuracy. Five steps sequentially are implemented on the used dataset via Pandas and Scikit-learn frameworks. The steps are preprocessing data, feature selection, feature scaling, training, and classification; to analyze the performance of the algorithms. The results showed that the DT algorithm with Adaboost is the best algorithm compared to the rest of the algorithms. The DT algorithm achieves an accuracy score of 0.912 with a shorter testing time of 2.2 seconds and mean square error (MSE) of 0.08.

Keywords: Multiple algorithms; Smart Irrigation; Machine learning; Freshwater; SVM; DT; Adaboost

I. INTRODUCTION

Machine learning (ML) depends on computational statistics, the main idea of ML is making predictions using computers. Machine learning algorithms create a mathematical predictive model that depends on a sample of data, known as “training dataset” [1]. Also, predictions or decisions made without explicit programming is another benefit of machine learning. Machine learning algorithms are used in many different applications, such as intelligent irrigation [2], healthcare [3], speech recognition [4], smart manufacturing [5], and human activity recognition [6]. The problem of over irrigation occurs due to poor distribution or lack of water management, while the under irrigation provides sufficient water to the plant [7]. Thus, this problem leads to poor crops. To save the freshwater with high quality of crops, a smart irrigation system is developed to classify the level of the water of the irrigation with the help of ML algorithms.

In the literature, a number of machine learning algorithms have been introduced in smart irrigation with ML. Researchers [8] introduced SVM and random forest (RF) algorithms to decide the amount of the irrigation required by crops. They evaluate the RF and SVM algorithms compared to previous algorithms, reached an accuracy of 81.6% for RF. In [9], authors proposed support vector regression (SVR) and k-means clustering ML algorithms to forecast the soil moisture. The algorithms are applied on online data using multiple sensors. These algorithms decide whether there will be irrigation or non-irrigation. S. Ramya and Swetha [10] presented SVR and bagging ML algorithms with internet of things (IoT) to develop a smart irrigation system. These algorithms help in effective decision making for smart irrigation. Also, the algorithms depended on data acquisition with online weather data collection. In [11], researchers implemented a sustainable irrigation system based on a random forest (RF) algorithm. They evaluated the performance of the algorithm via a confusion matrix, and achieved an accuracy of 84.6%. Authors [12] proposed a DT algorithm based on a fully automated system which fills a tank of the water for agriculture irrigation. This system includes a wireless network and a temperature sensor with a soil moisture sensor positioned on the plant. In [13], H. Chen et al. implemented a convolutional neural network (CNN) deep learning algorithm with a DT to evaluate and classify levels of water pollution with an analysis of chemical oxygen. Researchers [14] presented k-nearest neighbor (KNN) and SVM algorithms to predict water quality status. The KNN algorithm used 10-fold cross validation method to achieve a maximum accuracy and provides highest-f1-score compared to the SVM.

Looking at the reviewed literature, we found new ML algorithms that can be applicable to different datasets. In this paper, four ML algorithms are proposed to classify water levels for irrigation systems, the algorithms are support vector machine (SVM), decision tree (DT), SVM with Adaboost, and DT with Adaboost. The levels of the water are “Max, High, Medium, Low, and Stop”. The algorithms are applied to the dataset acquired from the Climate Toolbox [13]. The DT with Adaboost achieve the best accuracy with high performance among the other algorithms, it reached a maximum accuracy of 0.912. This result is achieved via the fine-tuning of the hyper parameters of the proposed algorithms. These algorithms are evaluated using assessing metrics of accuracy score and mean square error (MSE). The main contribution of the paper is achieving high accuracy to classify different water levels of a smart irrigation system.

The rest of the paper is structured as follows: Section II explains the proposed machine learning algorithms. Section III presents the experimental results. Section IV demonstrates the discussion of the results. Finally, conclusion of the paper is listed in Section V.

II. PROPOSED ALGORITHMS

This work has three main parts: (i) Data pre-processing with normalization such as rescaling (ii) training of four machine learning algorithms with fine-tuned parameters (iii) Evaluating the performance of each algorithm and classifying water irrigation levels. Figure 1 shows the suggested algorithms’ framework. These algorithms are implemented via the Scikit-learn library. The methodology includes five steps: the first step is the pre-processing by cleaning the missing
values using the dropna function, while the split function is used to split the dataset, and data visualization to discover the relations between the features. The second step is the rescaling on the dataset to improve the performance of the algorithms. For instance, obtaining normalized data, which falls in the range between 0 and 1, see Equation (1) [14]. The third step is the training of the ML algorithms on the used dataset. The fourth step is testing the performance of the proposed algorithms through learning curves. The fifth step is the classification of the water irrigation levels. The classification of the algorithms whether maximum level or high level, medium level, low level, and stop. A regularization technique with a Gridsearch is used to optimize the hyper-parameters of the algorithms for preventing the over-fitting occurrence. The proposed algorithms are implemented with Python programming language using Jupiter Notebook environment.

\[X_{\text{normalized}} = \frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \]

(1)

A. Support Vector Machine (SVM)

The SVM algorithm splits the dataset input variable space into a number of classes in order to identify the greatest marginal hyperplane, which is a line, to split the input variable space. The hyperplane could be generated in an iterative approach through the SVM algorithm that can reduce errors [15-17]. Equations (2) and (3) represent the mathematical relations of the hyperplane distance \(d_H(x_0) \), where \(w \) is the weight from the SVM algorithm, while \(b \) represents the bias of the algorithm. SVM has several advantages; it is relatively memory efficient and it performs well when number of samples less than number of dimensions.

\[w = \arg \max \left[\min_{i} d_H(\phi(x_i)) \right] \]

(2)

\[d_H(\phi(x_0)) = \frac{w^T(\phi(x_0)) + b}{w^2} \]

(3)

B. Decision Tree (DT)

The DT algorithm is used for both classification and regression problems. In most cases, it is used in classification issues. The DT algorithm is a tree-established classifier, in which inner nodes constitute the features of a dataset, with branches that constitute the choice guidelines and every leaf node represents the outcome [18,19]. The DT algorithm is based on the entropy \(H(S) \) and the information gain \((I_G) \), which are calculated using Equations (4) and (5). Regarding the DT, the features are selected from the dataset via calculating entropy and information gain. one of the benefits of this algorithm needs less effort during preprocessing of the data and doesn’t require scaling or normalization. Also, Gini is a method used to split the DT algorithm. Gini is the probability of correctly labelling a randomly selected element if it was labelled randomly based on the distribution of labels in the node. Equation (6) describes the Gini.

\[H(S) = \sum_{i=1}^{c} - p_i \log_2 p_i \]

(4)

\[I_G = \sum_{i=1}^{c} \log_2 \frac{1}{p_i} \]

(5)

\[\text{Gini} = \sum_{i=1}^{n} p_i^2 \]

(6)

C. Adaboost

It is an ensemble method usually produces more accurate solutions, which could use for several applications. It produces improved results, the basic concept of the ensemble methods is to train more than one algorithm and combine their results into a single result to obtain reasonable and appropriate performance [20]. The Adaboost function is described in Equation (7). There are several advantages for the gradient boosting: thus, it handles the dataset that are missed and also this algorithm doesn’t require a pre-processing for the data. In addition, it is more flexible, its optimization can be performed on various loss functions, and it has many hyper-parameters for tuning.

\[F(x) = \sum_{i=1}^{n} \alpha_i h(x) \]

(7)

D. Dataset Description

The used dataset is available [13] to classify the water levels of irrigation. It comprises 743 samples with different water irrigation levels “Max, High, Medium, Low, and Stop”. The dataset is gathered for coordinates: 30.8125 North and 31.0208 East for a position inside the University of Tanta. The dataset has seven features which are soil (Soil Moisture), \(t_{\text{min}} \) (Minimum Temperature), \(t_{\text{max}} \) (Maximum Temperature), ppt (Precipitation), Ws (Wind Speed), aet (Actual Evapotranspiration), and psdi (Palmer Drought Severity Index). The dataset is split intoan 80% training set and a testing set of 20%. The testing set is utilized to evaluate the performance of the proposed algorithms.

Figure 1. Framework of the proposed algorithms.
Figure 2. The relations between the t_{max} and t_{min} features of dataset.

Figure 3. The relations between the ppt and t_{max} features of dataset.

III. RESULTS

Figure 2 and 3 demonstrate the relations between the features of dataset. In figure 2, there is a symmetrical relationship between the t_{min} and t_{max}, while in figure 3, an inversely proportional relationship among the ppt and t_{max}.

Table 1 and figure 4 illustrate the testing accuracy and mean square error (MSE) of the proposed algorithms. The results show that the best algorithm in terms of the performance is the DT with Adaboost. It achieved an accuracy score of 0.912 and MSE 0.08. From Equation (8), the accuracy is calculated. The MSE is determined form Equation (9). The least accuracy is 0.879 for the SVM, while the least MSE is 0.1208. Also, the testing time of the DT with AdaBoost is 0.18 seconds.

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + FN + TN}
\]
\[
\text{MSE} = \frac{1}{n} \sum_{i=1}^{n}(p_i - e_i)^2
\]

Table 1. The testing accuracy and mean square error for the proposed algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
<th>MSE</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.879</td>
<td>0.1208</td>
<td>2.89</td>
</tr>
<tr>
<td>DT</td>
<td>0.906</td>
<td>0.093</td>
<td>2.8</td>
</tr>
<tr>
<td>SVM with Adaboost</td>
<td>0.893</td>
<td>0.103</td>
<td>1.9</td>
</tr>
<tr>
<td>DT with Adaboost</td>
<td>0.912</td>
<td>0.08</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Figure 4. The testing accuracy and mean square error for the proposed algorithms.

Learning curves as result of a k cross validation method, is used to diagnose problems with learning such as over-fitting, under-fitting or well-fit model through particular graphs. The process of the learning is divided into training and cross validation. The dataset is divided into k partitions, where k is selected to 10 with ten iterations of training. One partition for testing and while nine partitions for training. The second iteration is wrapped with the next partition as testing data while the remaining $k-1$ is utilized as training data and so on. Figure 5 demonstrates the learning curves of the DT algorithm with setting the max depth of 3. It is clear that the score of the training curve gradually decreases with increasing the number of training examples, thus the error of the training is increased, while the cross-validation score doesn’t increases than 0.6. So, there is an under-fitting. Also, the learning curves of the DT with max depth of 5 are shown in Figure 6.

Moreover, by increasing the max-depth hyperparameter, the performance of the DT algorithm is outperformed and became more accurate after applying the cross-validation method. So, there is no over-fitting or under-fitting. Further, Figure 7 illustrates the DT’s learning curves with max-depth 8. The training score is slightly decreased, while the validation score is gradually increased. Thereby, with increasing the training examples, the gap between the training score and validation score is decreased. So, this causes a well-fit. The Gridsearch technique is applied to the DT algorithm to select the optimum max-depth hyperparameter. This technique obtains that the best max-depth is 9.

Figure 5. Learning curves for DT algorithm with max depth of 3.
Vol. 6, No.3 – 2022

Figure 6. Learning curves for DT algorithm with max depth of 5.

Figure 7. Learning curves for DT algorithm with max depth of 8.

Figure 8. Learning curves for SVM algorithm with C of 1.

Figures 8 and 9 demonstrate the learning curves for the SVM algorithm. In figure 8, the score of training reached to 0.58 with 600 examples of training, while the cross validation score reached to 0.5. The regularization parameter ‘C’ is chosen to be 1. Also, the learning curves of the SVM are shown in Figure 9 with C of 2. It is clear that the training score is increased to 0.7, while the cross-validation score slightly increased.

Figure 9. Learning curves for SVM algorithm with C of 2.

Figure 10. Complexity curves for DT algorithm.

Figure 10 shows the complexity curves for DT algorithm. These curves as result of the training and validation process of the DT with different maximum depths. In Figure 10, two complexity curves: One for training and the other for validation. The complexity curves are similar to the learning curves, and the algorithm is scored on both the training and validation sets using the performance metric function.

IV. DISCUSSION

The results show that the introduced algorithms achieved high accuracy and the less error. The decision tree algorithm with Adaboost reached to an accuracy of 0.912 based on the max-depth hyperparameter. When the max-depth is configured to 8, the DT achieved accuracy of 0.899, when the max-depth is set to 5, the testing accuracy was 0.892, and the accuracy was 0.852 with max-depth of 3. The SVM with Adaboost algorithm achieved an accuracy of 0.893 at C of 1.0 with degree = 3. When the testing accuracy was 0.892 at C=2.0 with degree of 2. Further, the mean square errors of the algorithms are 0.1208, 0.093, 0.103, and 0.08 for the SVM, DT, SVM with Adaboost, and DT with Adaboost, respectively. The testing times of the algorithms are 2.89 s, 2.8 s, 1.9 s, and 0.18 s for the SVM, DT, SVM with Adaboost, and DT with Adaboost, respectively. The DT with Adaboost achieved highest accuracy due to it includes the advantages of the DT and Adaboost. The proposed algorithms identify the
testing dataset to five classes of the water irrigation levels. Furthermore, these ML algorithms are considered as high-performance benchmarks in smart irrigation to classify levels of water. Finally, Table 2 shows a comparison in terms the accuracy of the proposed algorithms and previous works.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>0.879</td>
</tr>
<tr>
<td>DT</td>
<td>0.906</td>
</tr>
<tr>
<td>SVM with Adaboost</td>
<td>0.893</td>
</tr>
<tr>
<td>DT with Adaboost</td>
<td>0.912</td>
</tr>
</tbody>
</table>

V. CONCLUSION

This paper presented an implementation of four machine learning algorithms for classification five levels of the water. The implemented algorithms are DT, SVM, DT with Adaboost, and SVM with Adaboost. The algorithms are applied to a dataset available on the Climate Toolbox. The used dataset is based on seven features: soil moisture, minimum temperature, maximum temperature, precipitation, wind speed, actual evapotranspiration, and Palmer drought severity index. Five phases are executed i.e. preprocessing data, one hot encoding, rescaling data, training, and testing. The DT algorithm with Adaboost achieved the best accuracy with 91.2%, the best MSE is 8%, and the training time is 0.18 seconds. These results are obtained with the optimum fine-tuning of max-depth, which is 9 with the best complexity rate, compared to the SVM with Adaboost algorithm which achieved 89.3% with MSE 10.3%, and training time 1.9 seconds. In the future work, a number of deep learning (DL) algorithms can be applied to the used dataset. Also, one could use a huge dataset contains more classes of water levels.

Funding:

This research has not received any type of funding.

Conflicts of Interest:

The authors declare that there is no conflict of interest.

REFERENCES

